BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

Skills 1

Use the substitutions given to find:
(a) $\int x \sqrt{1+x} \mathrm{~d} x ; u=1+x$
(b) $\int \frac{1+\sin x}{\cos x} \mathrm{~d} x ; u=\sin x$
(c) $\int \sin ^{3} x \mathrm{~d} x ; u=\cos x$
(d) $\int \frac{2}{\sqrt{x}(x-4)} \mathrm{d} x ; u=\sqrt{x}$
(e) $\int \sec ^{2} x \tan x \sqrt{1+\tan x} \mathrm{~d} x ; u^{2}=1+\tan x$
(f) $\int \sec ^{4} x \mathrm{~d} x ; u=\tan x$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 20B

Skills 2
Find the following integrals
(a) $\int 3 \ln x d x$
(b) $\int x \ln x \mathrm{~d} x$
(c) $\int \frac{\ln x}{x^{3}}$
(d) $\int(\ln x)^{2} \mathrm{~d} x$
(e) $\int\left(x^{2}+1\right) \ln x d x$

BHASVIC MatHS
 A1 DOUBLES ASSIGNMENT 20B

Skills 1 - Answers

(a) $\frac{2}{5}(1+x)^{\frac{5}{2}}-\frac{2}{3}(1+x)^{\frac{3}{2}}+c$
(b) $-\ln |1-\sin x|+c$
(c) $\frac{\cos ^{3} x}{3}-\cos x+c$
(d) $\ln \left|\frac{\sqrt{x}-2}{\sqrt{x}+2}+c\right|$
(e) $\frac{2}{5}(1+\tan x)^{\frac{5}{2}}-\frac{2}{3}(1+\tan x)^{\frac{3}{2}}+c$
(f) $\tan x+\frac{1}{3} \tan ^{3} x+c$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 20B

Skills 2 - Answers
(a) $3 x \ln x-3 x+c$
(b) $\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c$
(c) $-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+c$
(d) $x(\ln x)^{2}-2 x \ln x+2 x+c$
(e) $\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+x \ln x-x+3$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

1

(a) Find the set of values of u that satisfy $\frac{3}{u^{2}}+2 \leq \frac{-7}{u}, u \neq 0$
(b) Hence find the set of values of u that satisfy $\frac{3}{(u-1)^{2}}+2 \leq \frac{-7}{(u-1)}, u \neq 0$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 20B

2

A ball is thrown in the air. After t seconds, its height, s, in metres above the ground is given by the equation $2 s=-10 t^{2}+16 t+3$.
(a) Find t when the ball is 4.5 metres above the ground.
(b) Show that $s=a(t+b)^{2}+c$ where a, b and c are constants to be found.
(c) Hence find the maximum height of the ball and the value of t for which this occurs.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

3

Solve the following inequalities
(a) $\left|\frac{x-1}{x-2}\right| \geq 4$
(b) $\left|\frac{2 p^{2}}{3 p+2}\right|<1$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

4

The points A, B, C and D have co-ordinates $(-5,6)$ and $(5,1)$ and $(8,3)$ and $(k,-$ 13), respectively, where k is a constant.
(a) Find an equation of the straight line through A and B.
(b) Given that CD is perpendicular to AB , find the value of k

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 20B

5

A smooth bead Y is threaded on a light inextensible string. The ends of the string are attached to two fixed points X and Z on the same horizontal level. The bead is held in equilibrium by a horizontal force of magnitude 8 N acting parallel to ZX. The bead Y is vertically below X and angle $\mathrm{XZY}=30^{\circ}$ Find (a) the tension in the string, (b) the weight of the bead.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 20B

6

A particle P is projected with velocity $(3 u \mathbf{i}+4 u \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$ from a fixed point O on a horizontal plane. Given that P strikes the plane at a point 750 m from O,
(a) show that $u=17.5$,
(b) calculate the greatest height above the plane reached by P,
(c) find the angle the direction of motion of P makes with \mathbf{i} when $t=5$.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

7

The curve C has equation $y=\frac{x}{x^{2}+1}$
(a) Show that there is no point on C where the gradient is -1
(b) Find the co-ordinates of the points on C where the gradient is $\frac{12}{25}$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

8

(a) A curve has parametric equations $x=t^{2}-1, y=t-t^{3}$. Draw this curve for when $-2 \leq t \leq 2$.
(b) Find the Cartesian equation of the curve when $t>0$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 20B

9

The curve C shown in Figure 4 has parametric equations
$x=1+\sqrt{3} \tan \theta, \quad y=5 \sec \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}$

The curve C crosses the y-axis at A and has a minimum turning point at B, as shown in Figure 4.

Figure 4
(a) Find the exact coordinates of A.
(b) Show that $\frac{d y}{d x}=\lambda \sin \theta$, giving the exact value of the constant λ
(c) Find the coordinates of B.
(d) Show that the Cartesian equation for the curve C can be written in the form $y=k \sqrt{\left(x^{2}-2 x+4\right)}$ where k is a simplified surd to be found.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 20B

The figure above shows the graph of the curve with equation

$$
y=8 x-4 x \ln x, 0<x \leq e^{2}
$$

The region R is bounded by the curve, the x axis and the line with equation $x=1$
Determine the exact area of R

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

11

Using a suitable trigonometric substitution for x, find $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x^{2} \sqrt{1-x^{2}} \mathrm{~d} x$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

12

Find:

$$
\int \frac{3-x}{2 x^{3}-x^{2}} d x
$$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

1 - Answers

(a) $-3 \leq u \leq \frac{-1}{2}$ (you must include a sketch)
(b) $-2 \leq u \leq \frac{1}{2}$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

2 - Answers

(a) $t=\frac{3}{5}$ or $t=1$
(b) $a=-5, b=\frac{4}{5}, c=4.7$
(c) Max is 4.7 metres when $t=0.8$ seconds.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

3 - Answers

(a) $\frac{9}{5} \leq x \leq \frac{7}{3}$
(b) $-\frac{1}{2}<p<2$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

4 - Answers

(a) $x+2 y=7$
(b) $\mathrm{k}=0$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

5 - Answers

(a) $\mathrm{T}=9.24 \mathrm{~N}(3 \mathrm{sf})$
(b) $13.9 \mathrm{~N}(3 \mathrm{sf})$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 20B

6 - Answers

(b) 250 m
(c) 21.8°

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20B

7 - Answers

(b) $\left(\frac{1}{2}, \frac{2}{5}\right)$ and $\left(-\frac{1}{2},-\frac{2}{5}\right)$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

8 - Answers

(a) Check desmos
(b) $y=\sqrt{x+1}-(\sqrt{x+1})^{3}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 20B

9 - Answers

(a) $A\left(0, \frac{10 \sqrt{3}}{3}\right)$
(b) $\lambda=\frac{5}{\sqrt{3}}$
(c) $B(1,5)$
(d) $k=\frac{5 \sqrt{3}}{3}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

10 - Answers

$$
e^{4}-5
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20B

11 - Answers
$\frac{2 \pi+3 \sqrt{3}}{96}$

TAP TO RETURN

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 20B

12 - Answers

$-5 \ln |x|+3 x^{-1}+5 \ln |2 x-1|+c$

