BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17B

Skills 1

Find any point(s) of inflection of the following functions.
(a) $\mathrm{f}(x)=\cos ^{2} x-2 \sin x, 0<x<2 \pi$
(b) $\mathrm{f}(x)=-\frac{x^{3}-2 x^{2}+x-1}{x-2}, x \neq 2$
(c) $\mathrm{f}(x)=-\frac{x^{3}}{x^{2}-4}, x \neq \pm 2$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17B

Skills 2

Now, Integrate the following functions using an appropriate method when required:
(a) $\int-\sin (3 x+1) d x$
(b) $\int 4 \cos \left(\frac{x}{2}\right) d x$
(c) $\int \tan x d x$
(d) $\int \cot 4 x d x$
(e) $\int \sec ^{5} 2 x \tan 2 x d x$
(f) $\int \tan 5 x d x$
(g) $\int \sin ^{2} 6 x d x$
(h) $\int 3 \cos ^{2} 2 x d x$
(i) $\int 3 \tan ^{2} 4 x d x$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 17B
Skills 1 - Answers
(a) $\left(\frac{\pi}{6},-\frac{1}{4}\right),\left(\frac{5 \pi}{6},-\frac{1}{4}\right)$
(b) $(1,-1)$
(c) $(0,0)$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

Skills 2 - Answers
(a) $\frac{1}{3} \cos (3 x+1)+c$
(b) $8 \sin \left(\frac{x}{2}\right)+c$
(c) $-\ln (\cos x)+c$
(d) $\frac{1}{4} \ln (\sin 4 x)+c$
(e) $\frac{1}{10} \sec ^{5} 2 x+c$
(f) $-\frac{1}{5} \ln (\cos 5 x)+c$
(g) $\frac{1}{2} x-\frac{1}{24} \sin 12 x+c$
(h) $\frac{3}{2} x+\frac{3}{8} \sin 4 x+c$
(i) $\frac{3}{4} \tan 4 x-3 x+c$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17B

1

The curve C has equation $y=x e^{x}$.
(a) Find the exact coordinates of the stationary point on C and determine its nature.
(b) Find the coordinates of any non-stationary points of inflection on C.
(c) Hence sketch the graph of $y=x e^{x}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

2

(a) Sketch the two inequalities $y<9-x^{2}$ and $y \geq x^{2}-3 x+4$
(b) Shade the region that satisfies both inequalities

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

3

The figure shows a kite ABCD where the vertices A and C have coordinates $(4,3)$ and $(8,-7)$ respectively.
The diagonal BD is a line of symmetry of the kite.
Find an equation for the diagonal BD

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 17B

4
(a) A particle is projected upwards with a speed of $14 \mathrm{~m} \mathrm{~s}^{-1}$. Find for how long it is above 2 m .
(b) A ball is thrown vertically upwards from a height 1.6 m above the ground, with a speed of $7 \mathrm{~m} \mathrm{~s}^{-1}$. Find the speed when it hits the ground.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

5

A sledge has mass 30 kg . The sledge is pulled in a straight line along horizontal ground by means of a rope. The rope makes an angle 20° with the horizontal, as shown in Figure 3. The coefficient of friction between the sledge and the ground is 0.2 . The sledge is modelled as a particle and the rope as a light inextensible string. The tension in the rope is 150 N . Find, to 3 significant figures,
(a) the normal reaction of the ground on the sledge,
(b) the acceleration of the sledge

When the sledge is moving at $12 \mathrm{~m} \mathrm{~s}^{-1}$, the rope is released from the sledge.
(c) Find, to 3 significant figures, the distance travelled by the sledge from the moment when the rope is released to the moment when the sledge comes to rest.

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 17B

6

NEW TECHNQUES!

Given that the displacement \boldsymbol{s} for a particle at time \boldsymbol{t} seconds moving in a straight line is given by

$$
s=t^{3}+4 t+6
$$

Where \boldsymbol{v} is the velocity in ms^{-1} and \boldsymbol{a} is the acceleration in ms^{-2} and given that
$v=\frac{d S}{d t}$ and $a=\frac{d^{2} S}{d t^{2}}$. Find:
expressions for \boldsymbol{v} and \boldsymbol{a} terms of \boldsymbol{t}, the displacement, velocity and acceleration when $\mathrm{t}=2$.

Only zero and positive values of t should be considered.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

7

Two helicopters P and Q are moving in the same horizontal plane. They are modelled as particles moving in straight lines with constant speeds. At noon P is at the point with position vector $(20 \mathbf{i}+35 \mathbf{j}) \mathrm{km}$ with respect to a fixed origin O. At time t hours after noon the position vector of P is $\mathbf{p} \mathrm{km}$. When $t=\frac{1}{2}$ the position vector of P is $(50 \mathbf{i}-25 \mathbf{j}) \mathrm{km}$. Find
(a) the velocity of P in the form $(a \mathbf{i}+b \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$,
(b) an expression for \mathbf{p} in terms of t.

At noon Q is at O and at time t hours after noon the position vector of Q is $\mathbf{q} \mathrm{km}$. The velocity of Q has magnitude $120 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
(c) an expression for \mathbf{q} in terms of t,
(d) the distance, to the nearest km , between P and Q when $t=2$.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17B

8

A curve C has equation $y=\frac{1}{2} e^{2 x}-4 x+1, \quad x \in R$
The point P lies on C where $\mathrm{x}=\ln 4$.
(a) Show that the equation of the tangent to the curve is $y=12 x+9-32 \ln 2$

The point Q lies on C where $\mathrm{x}=\ln 2$.
The normal to the curve at the point Q meets the tangent to the curve at the point P, at the point R.
(b) Show that the co-ordinates of R are $(\ln 2,9-20 \ln 2)$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

9

The radius, rcm , of a circle is increasing at the constant rate of $3 \mathrm{~cm} \mathrm{~s}^{-1}$ Find the rate at which the area of the circle is increasing when its radius is 13.5 cm .

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

10

A circle has parametric equations $x=4 \sin t-3, \quad y=4 \cos t+5$.
(a) Find the Cartesian equation of the circle
(b) Draw a sketch of the circle
(c) Find the exact coordinates of the points of intersection of the circle with the y axis

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17B

11

(a) Show that $\cos ^{4} x \equiv \frac{1}{8} \cos 4 x+\frac{1}{2} \cos 2 x+\frac{3}{8}$
(b) Hence find $\int \cos ^{4} x \mathrm{~d} x$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17B

12

(a) Given $f(x)=\frac{x}{x+3}-\frac{x+24}{2 x^{2}+5 x-3}$, show that $f(x)=\frac{2(x-4)}{2 x-1}$
(b) Find $f^{-1}(x)$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

1 - Answers

(a) $\left(-1,-\frac{1}{e}\right)$, minimum
(b) $\left(-2,-\frac{2}{e^{2}}\right)$
(c)

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

2 - Answers

Sketch

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17B

3 - Answers

$$
5 y=2 x-22
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17B

4 - Answers

(a) 2.56 seconds
(b) $9.0 \mathrm{~ms}^{-1}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

5 - Answers

(a) 243 N
(b) $3.08 \mathrm{~ms}^{-2}$
(c) 36.7 m

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17B

6 - Answers

(a) $v=3 t^{2}+4, a=6 t$
(b) $22 \mathrm{~m}, 16 \mathrm{~m}^{-1}, 12 \mathrm{~ms}^{-2}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

7 - Answers

(a) $60 \mathbf{i}-120 \mathbf{j}$
(b) $\mathbf{p}=20 \mathbf{i}+35 \mathbf{j}+(60 \mathbf{i}-120 \mathbf{j}) \mathrm{t}$
(c) $\mathbf{q}=96 \mathbf{t i}-72 t \mathbf{j}$
(d) 80 km

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

8 - Answers
Proof

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

9 - Answers

$81 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17B

10 - Answers

(a) $(x+3)^{2}+(y-5)^{2}=16$
(b) check desmos
(c) $(0,5+\sqrt{7}),(0,5-\sqrt{7})$

BHASVIC M ${ }^{\prime}$ 'THS A1 DOUBLES ASSIGNMENT 17B

11 - Answers

(a) $\cos ^{4} x=\left(\cos ^{2} x\right)^{2}=\left(\frac{1+\cos 2 x}{2}\right)^{2}=\frac{1}{4}+\frac{1}{2} \cos 2 x$

$$
\begin{aligned}
& +\frac{1}{4} \cos ^{2} 2 x=\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{4}\left(\frac{1+\cos 4 x}{2}\right) \\
& =\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x
\end{aligned}
$$

(b) $\frac{1}{32} \sin 4 x+\frac{1}{4} \sin 2 x+\frac{3}{8} x+c$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

12 - Answers
(a) Proof
(b) $\frac{(x-8)}{2 x-2}$

