Skills 1

Sketch and state the ranges of the following functions (defined on \mathbb{R}): show asymptotes clearly

(a)
$$f(x) = \frac{1}{x+2} + 1$$

(b)
$$g(x) = 1 - e^{2x}$$

(c)
$$h(x) = \ln(1+x)$$

Skills 2

Differentiate each of the following functions

(a) $\ln 8x$

(b) $2e^x - 2\ln(x^2)$

(c)
$$\frac{3x}{1-\sin x}$$

(d)
$$\frac{e^x}{\ln x}$$

(e) $3\ln x - \ln 3x$

(f) $\ln \sqrt{x} - 2 \ln(1/x)$

TAP FOR ANSWERS

Skills 1 - Answers

Check sketches on Desmos

- (a) $f(x) \in \mathbb{R}, f(x) \neq -2$
- (b) $g(x) \in \mathbb{R}, g(x) < 1$

(c) $h(x) \in \mathbb{R}$,

Skills 2 – Answers

(a)
$$\frac{1}{x}$$

(b) $2e^{x} - \frac{4}{x}$
(c) $\frac{3-3 \sin x + 3x \cos x}{(1-\sin x)^{2}}$
(d) $\frac{e^{x}(x \ln x - 1)}{x(\ln x)^{2}}$
(e) $\frac{2}{x}$
(f) $\frac{5}{2x}$

- (c) the value of *a* and the value of *b*,
- (d) the value of *x* for which f(x) = 5x.

2

The points A and B have coordinates (4, 6) and (12, 2) respectively. The straight line l_1 passes through A and B.

(a) Find an equation for l_1 in the form ax + by = c, where a, b and c are integers.

The straight line l_2 passes through the origin and has gradient -4.

(b) Write down an equation for l_2 .

(c) The lines l_1 and l_2 intersect at the point *C*. Find the exact coordinates of the mid-point of *AC*.

3

The circle *C* has equation $x^2 + y^2 - 12x + 8y + 16 = 0$

(a) Find the centre and radius of *C*

(b) Given that *C* crosses the *x* axis at the points *A* and *B*, find the length *AB* giving your answer in the form $k\sqrt{5}$.

4

A stone is dropped from the top of a tower. One second later another stone is thrown vertically downwards from the same point with a velocity of 14 m s^{-1} . If they hit the ground together, find the height of the tower.

5

A girl playing volleyball on horizontal ground hits the ball towards the net 9 m away from a point 1.5 m above the ground. The ball moves in a vertical plane which is perpendicular to the net. The ball just passes over the top of the net, which is 2.4 m above the ground, as shown in the diagram.

The ball is modelled as a particle projected with initial speed $U \text{ m s}^{-1}$ from point O, 1.5 m above the ground at an angle α to the horizontal.

By writing down expressions for the horizontal and vertical distances from *O* to the ball, *t* seconds after it was hit, show that when the ball passes over the net $0.9 = 9 \tan \alpha - \frac{81g}{2U^2 \cos^2 \alpha}$

Given that $\alpha = 30^{\circ}$ Find the speed of the ball as it passes over the net.

6

A ship *S* is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of *S* is $(-4\mathbf{i} + 2\mathbf{j})$ km.

(a) Find the position vector of *S* at time *t* hours.

A ship *T* is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j}) \text{ km } h^{-1}$. At time t = 0, the position vector of *T* is $(6\mathbf{i} + \mathbf{j}) \text{ km}$. The two ships meet at the point *P*.

(b) Find the value of *n*.

(c) Find the distance *OP*.

7

(a) Prove that the derivative of $\sin(3x)$ is $3\cos(3x)$ from first principles

(b) Prove that the derivative of $\cos(3x)$ is $-3\sin(3x)$ from first principles

A curve *C* has equation $y = \frac{e^{2x}}{(x-2)^2}$, $x \neq 2$.

(a) Show that $\frac{dy}{dx} = \frac{Ae^{2x}(Bx-C)}{(x-2)^3}$ where *A*, *B* and *C* are integers to be found.

(b) Find the equation of the tangent of *C* at the point x = 1.

9

Curve *C* has equation $x = (\arccos y)^2$. Show that

$$\frac{dy}{dx} = -\frac{\sqrt{1 - \cos^2 \sqrt{x}}}{2\sqrt{x}}$$

TAP FOR ANSWERS

10

The moment magnitude scale is used by seismologists to express the sizes of earthquakes. The scale is calculated using the formula

 $M = \frac{2}{3}\log_{10}(S) - 10.7$

Where *S* is the seismic moment in dyne cm.

(a) Find the magnitude of an earthquake with a seismic moment of 2.24×10^{22} dyne cm.

(b) Find the seismic moment of an earthquake with(i) Magnitude 6(ii) Magnitude 7

(c) Using your answers to part b or otherwise, show that an earthquake of magnitude 7 is approximately 32 times as powerful as an earthquake of magnitude 6.

11

$$f(x) = 3x + 2$$
 and $g(x) = \frac{1}{4}$ with $x \neq 0$

(a) Find $f^{-1}(x)$, $g^{-1}(x)$ and gf(x)

(b) Show that $(gf)^{-1}(x) = f^{-1}g^{-1}(x) = \frac{1}{3}(\frac{1}{x} - 2)$

Note: you will need to show *both* that $f^{-1}g^{-1}(x) = \frac{1}{3}\left(\frac{1}{x} - 2\right)$ and that $(gf)^{-1}(x) = \frac{1}{3}\left(\frac{1}{x} - 2\right)$.

12

Find the inverses of the following functions where each function is defined on its given domain, $x \in \mathbb{R}$

(a)
$$f(x) = (x-1)^2 + 4, x \ge 1$$

(b) *
$$f(x) = x^2 + 4x - 1, x \ge -2$$

(c)
$$*f(x) = x^2 + 4, x \ge -2$$

* complete the square first

1 - Answers

(a) and (b) use graph sketching app

(c)
$$a = -2, b = -2$$

(d) $x = -\frac{1}{6}$

2 - Answers

(a) x + 2y - 16 = 0(b) y = -4x(c) $\left(\frac{6}{7}, \frac{53}{7}\right)$

3 - Answers

(a) centre (6,-4), radius = 6

(b) k = 4

4 - Answers

5 - Answers

(a)
$$R(\rightarrow): x = 9 = U \cos \alpha \times t$$
, so $t = \frac{9}{U \cos \alpha}$
 $R(\uparrow): y = U \sin \alpha \times t - \frac{1}{2}gt^2$
Substitute for $t \Rightarrow y = U \sin \alpha \left(\frac{9}{U \cos \alpha}\right) - \frac{1}{2}g\left(\frac{9}{U \cos \alpha}\right)^2$
Use $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ and $y = 0.9$. Rearrange to give $0.9 = 9 \tan \alpha - \frac{81g}{2U^2 \cos^2 \alpha}$.

(b) 8.8 m s⁻¹

6 - Answers

- (a) (-4+3t)i + (2+3t)j
- (b) 3.5
- (c) 8.25 km

7 - Answers

8 - Answers

(a)
$$\frac{(x-2)^2 (2e^{2x}) - e^{2x} [2(x-2)]}{(x-2)^4} = \frac{2(x-2)^2 e^{2x} - 2e^{2x} (x-2)}{(x-2)^4}$$
$$= \frac{2(x-2)e^{2x} - 2e^{2x}}{(x-2)^3} = \frac{2e^{2x} (x-2-1)}{(x-2)^3} = \frac{2e^{2x} (x-3)}{(x-2)^3}$$
$$A = 2, B = 1, C = 3$$

(b)
$$y = 4e^2x - 3e^2$$

9 - Answers

$$\frac{dy}{dx} = 2 \arccos y \times -\frac{1}{\sqrt{1-y^2}} = -\frac{2 \arccos y}{\sqrt{1-y^2}}$$
$$\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{2 \arccos y} = -\frac{\sqrt{1-\cos^2 \sqrt{x}}}{2\sqrt{x}}$$

10 - Answers

(a) 4.2

- (b) (i) 1.12×10^{25} dyne cm (ii) 3.55×10^{26} dyne cm
- (c) Divide (b)(ii) by (b)(i)

11 - Answers

 $f^{-1}(x) = \frac{1}{3}(x-2), \quad g^{-1}(x) = \frac{1}{x}, x \neq 0, \quad gf(x) = \frac{1}{3}(x+2), x \neq -\frac{2}{3}$

12 - Answers

(a) $f^{-1}(x) = 1 + \sqrt{x - 4}$ (b) $f^{-1}(x) = -2 + \sqrt{x + 5}$ (c) $f^{-1}(x) = \sqrt{x + 4} - 2$