BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 12B

Skills 1

Sketch the following functions on the given domain and hence find their ranges:
(a) $f(x)=x^{2}+4 x+3 \quad$ Domain f: $x \in \mathbb{R}$
(b) $g(t)=2 t^{2}-4 t-1 \quad$ Domain $g: t \in \mathbb{R}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12B

Skills 2

The functions f and g are defined on the whole of R by $f(x)=x^{2}+1$, $g(x)=x+3$

Find:
(a) $f g(0)$
(b) $f g(1)$
(c) $f^{2}(2)$
(d) $f g(x)$
(e) $g f(x)$
(f) $f f(x)$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

Skills 1 - Answers

(a) Range f: $f(x) \geq-1$
(b) Range g: $g(x) \geq-3$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

Skills 2 - Answers
(a) 10
(b) 17
(c) 26
(d) $(x+3)^{2}+1$
(e) $x^{2}+4$
(f) $\left(x^{2}+1\right)^{2}+1$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12B

1

A person throws a ball in a sports hall. The height of the ball, $h \mathrm{~m}$, can be modelled in relation to the horizontal distance from the point it was thrown from by the quadratic equation: $h=-\frac{3}{10} x^{2}+\frac{5}{2} x+\frac{3}{2}$

The hall has a sloping ceiling which can be modelled with equation $h=\frac{15}{2}-\frac{1}{5} x$.
Determine whether the model predicts that the ball will hit the ceiling.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

2

The circle C has equation $x^{2}+y^{2}-12 x+8 y+16=0$
(a) Find the centre and radius of C
(b) Given that C crosses the x axis at the points A and B, find the length $A B$ giving your answer in the form $k \sqrt{5}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

3

A car accelerates at a constant rate, starting from rest at a point A and reaching a speed of $65 \mathrm{~km} \mathrm{~s}^{-1} 26 \mathrm{~s}$. This speed is then maintained and the car passes a point $B 3$ minutes after leaving A.
(a) Sketch a speed-time graph to illustrate the motion of the car.
(b) Find the distance from A to B.

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 12B

4

Draw a force diagram and resolve forces horizontally and vertically. N.B. In the case o limiting friction, $F=\mu R$, where R is the normal reaction.

An airline passenger pushes a 15kg suitcase along the floor with his foot. A force (P) of 60N is needed to move the suitcase. Find:-
(a) the co-efficient of friction.
(b) the force needed to give the suitcase an acceleration of $0.2 \mathrm{~ms}^{-2}$.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

5

Two masses of 3 kg and 5 kg are suspended either end of a light inextensible string which passes over a smooth fixed peg. The particles are held in the positions shown, with the string taut; they are then released from rest. Construct separate equations for each of the masses. Find the tension in the string and the acceleration of the particles.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

[In this question, the horizontal unit vectors \mathbf{i} and \mathbf{j} are directed due East and North respectively.]

A coastguard station O monitors the movements of ships in a channel. At noon, the station's radar records two ships moving with constant speed. Ship A is at the point with position vector $(-5 \mathbf{i}+10 \mathbf{j}) \mathrm{km}$ relative to O and has velocity $(2 \mathbf{i}+2 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$. Ship B is at the point with position vector $(3 \mathbf{i}+4 \mathbf{j}) \mathrm{km}$ and has velocity $(-2 \mathbf{i}+5 \mathbf{j}) \mathrm{km}$ h^{-1}.
(a) Given that the two ships maintain these velocities, show that they collide.

The coast guard radios ship A and orders it to reduce its speed to move with velocity $(\mathbf{i}+\mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$.

Given that A obeys this order and maintains this new constant velocity,
(b) find an expression for the vector $\overrightarrow{\mathrm{AB}}$ at time t hours after noon.
(c) find, to 3 significant figures, the distance between A and B at 1400 hours,
(d) find the time at which B will be due north of A.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

7

A large tank is in the shape of a cuboid with a rectangular base and no top. Two of the vertical opposite faces of the cuboid are square and the height of the cuboid is x metres.
(a) given that the surface area of the tank is $54 \mathrm{~m}^{2}$, show that the capacity, V , of the tank is given by $V=18 x-\frac{2}{3} x^{3}$.
(b) Find the maximum value for V, fully justifying the fact that it is the maximum value.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

8

NEW TECHS!

$f(x)=\frac{5 x^{2}+7 x}{2 x^{4}}$
(a) Split $f(x)$ into two fractions and find an expression for $f^{\prime}(x)$
(b) Now consider the functions $g(x)=5 x^{2}+7 x$ and $h(x)=2 x^{4}$. Find expressions for $g^{\prime}(x)$ and $h^{\prime}(x)$
(c) Now, $f(x)=\frac{g(x)}{h(x)}$ Which one of the following rules is true?

A

$$
f(x)=\frac{g^{\prime}(x)}{h \prime(x)}
$$

B $\quad f(x)=\frac{g^{\prime}(x) h(x)+g(x) h \prime(x)}{h(x)}$
C

$$
f(x)=\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}}
$$

D

$$
f(x)=\frac{g^{\prime}(x) h(x)+g(x) h^{\prime}(x)}{h(x)^{2}}
$$

E $\quad f(x)=\frac{g(x) h^{\prime}(x)-g \prime(x) h(x)}{h(x)}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

9

The figure above shows the curve with equation

$$
y=x^{3}-12 x^{2}+45 x-34
$$

The points A and B lie on the curve, where $x=1$ and $x=4$ respectively. The finite region R is bounded by the curve and the straight line segment $A B$. Show that the area of R, shown shaded in the figure is $\frac{81}{4}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12B

10

Evaluate the following

$$
\lim _{\delta x \rightarrow 0} \sum_{x=0}^{36}(2+\sqrt{x})^{2} d x
$$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 12B

11

The function t is defined by $\mathrm{t}: x \mapsto 5-2 x$
Solve the equation $\mathrm{t}^{2}(x)-(\mathrm{t}(x))^{2}=0$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

The function h is defined by $h(x)=x^{2}-6 x+20$ and has domain $x \geq a$. Given that $\mathrm{h}(x)$ is a one-to-one function find the smallest possible value of the constant a.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12B

You have a tracking test the week after you get back from Christmas. We have given you 4 less questions than normal here - use this time to revise anything you feel is weak to prepare for the test.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

1 - Answers

Yes, the ball will hit the ceiling.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

2 - Answers

(a) Centre $(6,-4)$ radius 6
(b) $k=4$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

3 - Answers

(b) 10855 km

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 12B

4 - Answers

(a) $\mu=0.408$
(b) $\mathrm{P}=63 \mathrm{~N}$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 12B

5 - Answers

(a) $1.96 \mathrm{~ms}^{-2}$
(b) $\mathrm{T}=23.5 \mathrm{~N}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12B

6 - Answers

(b) $A B=(8-3 t) \mathbf{i}+(-6+4 t) \mathbf{j}$
(c) 2.83 km
(d) 1440 hours

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12B

7 - Answers

(b) 36

BHASVIC M α ITHS A1 DOUBLES ASSIGNMENT 12B

8 - Answers

(a) $-\frac{5}{x^{3}}-\frac{21}{2 x^{4}}$
(b) $10 x+7,8 x^{3}$
(c) C

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12B

9 - Answers

Proof

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12B

$$
10 \text { - Answers }
$$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 12B
11 - Answers
$3 \pm \frac{\sqrt{6}}{2}$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 12B

12 - Answers

$$
a=11
$$

