BHASVIC M α THS A1 DOUBLES SKILLS 1 - PART B

Convert the below into the form $a x^{m}+b x^{n}$:
(a) $\frac{1+5 x}{4 x}$
(b) $\frac{3 x-4 \sqrt{x}}{x^{3}}$
(c) $\frac{\sqrt[4]{16 x^{3}}-\sqrt[3]{27 x^{3}}}{2 x^{2}}$
(d) $\frac{4-5 x}{3 x^{2}}$
(e) $\frac{\sqrt{4 x^{3}}-1-2 x}{\sqrt[3]{x}}$
(f) $\frac{4 x+\sqrt{81 x^{2}}}{9 \sqrt{x}}$

BHASVIC M α 'THS A1 DOUBLES SKILLS 1 - PART B

2

NEW TECHNQUUES
 Co-ordinate Geometry -line

The equation of straight line can be constructed using $m(x-a)=(y-b)$ where (a, b) is a point on the line and \mathbf{m} is the gradient of the line. You can then re-arrange to get the equation in the form $a x+b y+c=0$, where a, b and c are integers.

Example:

Find the equation of the line through $(1,-2)$ with gradient $\frac{1}{2}$ (giving your answer in the form $a x+b y+c=0$, where a, b and c are integers):
(substituting point and gradient into the formula) (multiplying both sides by 2)

$$
\begin{aligned}
& \frac{1}{2}(x-1)=y+2 \\
& x-1=2 y+4 \\
& x-2 y-5=0
\end{aligned}
$$

(getting it all on one side for required form)

BHASVIC Ma'THS A1 DOUBLES SKILLS 1 - PART B

2

Give your answers to these questions in the form $a x+b y+c=0$ where a, b and c are integers.
(a) Find the equation of the line through $(2,-3)$ with gradient $\frac{3}{2}$
(b) Find the equation of the line through $(-2,-1)$ with gradient $-\frac{7}{2}$
(c) Find the equation of the line through $(2,3)$ with gradient $-\frac{1}{2}$

BHASVIC MaTHS
A1 DOUBLES SKILLS 1 - PART B

1 - Answers

(a) $\frac{1}{4} x^{-1}+\frac{5}{4}$
(b) $3 x^{-2}-4 x^{-\frac{5}{2}}$
(c) $x^{-\frac{5}{4}}-\frac{3}{2} x^{-1}$
(d) $\frac{4}{3} x^{-2}-\frac{5}{3} x^{-1}$
(e) $2 x^{\frac{7}{6}}-x^{-\frac{1}{3}}-2 x^{\frac{2}{3}}$
(f) $\frac{13}{9} x^{\frac{1}{2}}$

BHASVIC MaTHS
A1 DOUBLES SKILLS 1 - PART B

2 - Answers

(a) $3 x-2 y-12=0$
(b) $7 x+2 y+16=0$
(c) $x+2 y-8=0$

BHASVIC Ma'THS A1 DOUBLES PROBLEM SHEET 1 - PART B

1

Find all of the roots of the function $r(x)=x^{8}-17 x^{4}+16$

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

2

The function f is defined as $\mathrm{f}(x)=2^{2 x}-20\left(2^{x}\right)+64, x \in \mathbb{R}$.
(a) Write $\mathrm{f}(x)$ in the form $\left(2^{x}-a\right)\left(2^{x}-b\right)$, where a and b are real constants.
(b) Hence find the two roots of $\mathrm{f}(x)$.

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
3
(a) Evaluate the discriminant, $b^{2}-4 a c$, for each of the quadratics

$$
\begin{aligned}
& f(x)=x^{2}-2 x+1 \\
& g(x)=x^{2}-2 x+3 \\
& h(x)=x^{2}-2 x-5
\end{aligned}
$$

(b) Hence state which of the following sketches could show the graph of $f(x)$, $g(x)$ and $h(x)$ and explain why.

Quadratic A

Quadratic B

Quadratic C

(c) For the quadratic $f(x)=x^{2}-k x-k+1$, the discriminant $=-7$, find the possible values of k. Make sure you are correctly identifying a, b and c !

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

4
For this question, $\mathrm{f}(x)=4 k x^{2}+(4 k+2) x+1$, where k is a real constant.
(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k.
(b) By simplifying your answer to part a or otherwise, prove that $\mathrm{f}(x)$ has two distinct real roots for all non-zero values of k.
(c) Explain why $\mathrm{f}(x)$ cannot have two distinct real roots when $k=0$.

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

5

A fertiliser company uses a model to determine how the amount of fertiliser used, f kilograms per hectare, affects the grain yield g, measured in tonnes per hectare.

$$
g=6+0.03 f-0.00006 f^{2}
$$

(a) According to the model, how much grain would each field yield without any fertiliser?
(b) One farmer currently uses 20 kg of fertiliser per hectare. How much more fertiliser would he need to use to increase his grain yield by 1 tonne per hectare?

A1 DOUBLES PROBLEM SHEET 1 - PART B

6

SWC REVIEW!
 GRAPH TRANSFORMATIONS

$f(x)+b$ is $f(x)$ moved up b units. Moving the function down works the same way; $f(x)-b$ is $f(x)$ moved down b units.
$f(x+b)$ gives $f(x)$ shifted b units to the left. Shifting to the right works the same way; $f(x-b)$ is $f(x)$ shifted b units to the right.
(a) If $f(x)=x^{2}$, sketch the following transformations, stating the co-ordinates of the y and x axis intercepts.
(i) $y=f(x)+1$
(ii) $y=f(x)-3$
(iii) $y=f(x+1)$
(iv) $y=f(x-2)$

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
6
(b) If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{3}}$, sketch the following transformations, stating the co-ordinates of the y and x axis intercepts.
(i) $y=f(x)+1$
(ii) $y=f(x)-3$
(iii) $y=f(x+1)$
(iv) $y=f(x-2)$
(c) If $f(x)=\frac{1}{x}$, sketch the following transformations. Show clearly the equations of any asymptotes and where the graph cuts the y and x axes.
(i) $y=f(x)+1$
(ii) $y=f(x)-3$
(iii) $y=f(x+1)$
(iv) $y=f(x-2)$

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

6

(d) If $f(x)=\frac{\mathbf{1}}{\boldsymbol{x}^{2}}$, sketch the following transformations. Show clearly the equations of any asymptotes and where the graph cuts the y and x axes.
(i) $y=f(x)+1$
(ii) $y=f(x)-3$
(iii) $y=f(x+1)$
(iv) $y=f(x-2)$

BHASVIC Ma'THS

A1 DOUBLES PROBLEM SHEET 1 - PART B

7

The straight line l passes through $A(1,3 \sqrt{3})$ and $B(2+\sqrt{3}, 3+4 \sqrt{3})$. Show that l meets the x-axis at the point $C(-2,0)$

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
8

NEW TECHNQUUES

A car starts from rest and accelerates uniformly for 15 seconds until it reaches a speed of $12 \mathrm{~ms}^{-1}$. It then maintains this speed for 40 seconds before decelerating uniformly to rest in 30 seconds.

Draw a speed-time graph to model this motion and calculate the total distance travelled by the car (you will need to use the fact that the distance travelled equals area under a speed-time graph).

BHASVIC M α 'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
9

NEW TECHNQUES

The diagram is a speed-time graph representing the motion of a cyclist along a straight road. At time $t=0 \mathrm{~s}$, the cyclist is moving with speed $u \mathrm{~m} \mathrm{~s}^{-1}$. The speed is maintained until time $t=15 \mathrm{~s}$, when she slows down with constant deceleration, coming to rest when $t=23 \mathrm{~s}$. The total distance she travels in 23 s is 152 m .

Find the value of u.

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
10

NEW TECHNIIQUES

This is a suvat table. Only model a situation with a suvat table if acceleration is constant

s	
u	
v	
a	
t	

$\mathrm{s}=$ displacement in metres, $\mathrm{u}=$ initial velocity in metres per second,
$\mathrm{v}=$ final velocity in metres per second, $\mathrm{a}=$ acceleration in metres per second2,
$\mathrm{t}=$ time in seconds
The suvat table can also be drawn horizontally:

s	u	v	a	t

10

The five suvat equations are given below. Each equation contains only 4 out of the 5 variables.

$$
\begin{array}{cc}
s=v t-\frac{1}{2} a t^{2} & v=u+a t \\
s=u t+\frac{1}{2} a t^{2} & \\
s=\left(\frac{u+v}{2}\right) t \\
& v^{2}=u^{2}+2 a s
\end{array}
$$

Write out (many times) and memorise the suvat equations.
For each of the situations on the next page, make and complete a suvat table. Put a question mark in the box for whichever piece of information is required by the question, and a cross for the variable you're not interested in. Make sure you've used displacement not distance, and make sure you're consistently using the same direction (up or down, or left or right) as the 'positive' direction.

For each situation, select an equation from the 5 listed on the previous page. The easiest way to do this is to see what information is missing from your table (neither given nor required by the question) and choose the equation with this variable missing.

Write down the equation, substitute in the values from your suvat table and then rearrange to find the required information. Don't forget units on your final answer!

In all mechanics questions, you need to round your final answer to 2 or 3 significant figures at the end.
(a) A particle moves in a straight line. When $t=0$ its velocity is $3 \mathrm{~m} \mathrm{~s}^{-1}$.

When $t=4$ its velocity is $12 \mathrm{~m} \mathrm{~s}^{-1}$. Find its acceleration, assumed to be constant.

BHASVIC MaTHS
 A1 DOUBLES PROBLEM SHEET 1 - PART B

10
(b) A car is approaching traffic lights at $15 \mathrm{~m} \mathrm{~s}^{-1}$ when the driver applies the brake and comes to a stop in 45 m . Find the deceleration, assumed constant, and the time taken to stop.
(c) A particle has constant acceleration $6 \mathrm{~m} \mathrm{~s}^{-2}$ whilst travelling in a straight line between points A and B. It passes A at $2 \mathrm{~m} \mathrm{~s}^{-1}$ and B at $5 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the distance $A B$.
(d) A person on the top of a tower of height 45 m holds their arm over the side of the building and drops a stone vertically downwards. The stone takes 3.03s to reach the ground. Use this information to prove that the value of acceleration due to gravity is 9.8 to 2 significant figures.

BHASVIC MaTHS
 A1 DOUBLES PROBLEM SHEET 1 - PART B

11

A particle is projected vertically upwards with speed $24.5 \mathrm{~m} \mathrm{~s}^{-1}$. Find the total time for which it is 21 m or more above its point of projection.

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

12

NEW TECHNQUES

FP1 Complex Numbers: Solving polynomials with real coefficients
Reminder: from Moving on Day / Starting with Confidence
Remember $\boldsymbol{i}^{2}=\mathbf{- 1}$
TASK: Solve the following equation to find x in the form $x=a+i b$
EXAMPLE: $x^{2}+16=0$

So,

$$
x^{2}=-16
$$

Then,

$$
x= \pm \sqrt{-16}
$$

Then,

$$
x= \pm i \sqrt{ } 16
$$

Therefore, $\quad x= \pm 4 i$
NOW YOU TRY:

Part A

Find x such that:
(i) $x^{2}+81=0$
(i) $x^{2}+2 x+5=0$
(iii) $-4 x=x^{2}+7$
(iv) $x^{3}+2 x^{2}+17 x=0$

As you may have noticed, if $z=a+b i$ is a complex root of a polynomial with real coefficients (e.g. $a x^{2}+b x+c=0$, where a, b and c are real) then $z^{*}=a-i b$ (the complex conjugate, z^{*} or \bar{z}) is also a root.
We know that if 2 and 3 are the roots of an equation, then we can write it in the form
$(x-2)(x-3)=0$.

BHASVIC M ${ }^{\prime}$ I'HS
 A1 DOUBLES PROBLEM SHEET 1 - PART B

The same thing is true here: if we know that the two complex roots are $1+2 \mathrm{i}$ and $1-2 i$, then we can write the equation as $(x-(1+2 i))(x-(1-2 i))=0$.
To expand this and find our quadratic, we can use the grid as follows:
We want to expand $(x-1-2 i)(x-1+2 i)$

	x	-1	2 i
x	x^{2}	$-x$	$2 i x$
-1	$-x$	1	-2 i
-2 i	$-2 i x$	2 i	4

Adding the contents of our 9 boxes, we get $x^{2}-x-x-2 i x+2 i x+1+2 i-$ $2 i+4=x^{2}-2 x+5$
So our quadratic is $x^{2}-2 x+5=0$.

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
12

PART B

One root of the quadratic equation $x^{2}+p x+q=0$, where p and q are real, is the complex number $2-3 \mathrm{i}$.
(i) Write down the other root.
(ii) Find the values of p and q

BHASVIC M α THS

A1 DOUBLES PROBLEM SHEET 1 - PART B
1 - Answers
$1,1,2$ and -2

BHASVIC Ma'THS

A1 DOUBLES PROBLEM SHEET 1 - PART B

2 - Answers
(a) $\mathrm{f}(x)=\left(2^{x}-16\right)\left(2^{x}-4\right)$
(b) 4 and 2

BHASVIC Ma'THS

A1 DOUBLES PROBLEM SHEET 1 - PART B

3 - Answers

(a) $0,-8,24$
(b) $f(x)$ is quadratic $\mathrm{C}\left(b^{2}-4 a c=0\right.$ so 1 root - graph touches the x axis) $g(x)$ is quadratic $\mathrm{B}\left(b^{2}-4 a c<0\right.$ so no roots - graph doesn't cut the x axis) $h(x)$ is quadratic $\mathrm{A}\left(b^{2}-4 a c>0\right.$ so two distinct roots - graph cuts the x axis)
(c) $\mathrm{k}=-1$ or $\mathrm{k}=-3$

BHASVIC M α 'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

4 - Answers

(a) $16 k^{2}+4$
(b) $k^{2} \geq 0$ for all k so $16 k^{2}+4>0$
(c) When $k=0, \mathrm{f}(x)=2 x+1$; this is a linear function with only one root.

BHASVIC M α THS

A1 DOUBLES PROBLEM SHEET 1 - PART B
5 - Answers
(a) 6 tonnes
(b) 39.6 kilograms per hectare

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B

6 - Answers

In the library computers you can plot the graphs on 'autograph'. On your phone you could use the free app 'desmos'. Or, use your graphical calculator to check. It is important you try these yourself first, don't go straight to the answers!

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
7 - Answers
Proof

TAP TO RETURN

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
8 - Answers

750m

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
9 - Answers
$u=8$

BHASVIC M α 'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
10 - Answers
(a) $2.25 \mathrm{~ms}^{-2}$
(b) $a=2.5 \mathrm{~ms}^{-2}, t=6$
(c) 1.75 m

BHASVIC Ma'THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
11-Answers
2.8 seconds

BHASVIC M α THS
A1 DOUBLES PROBLEM SHEET 1 - PART B
12 - Answers
Part A:
(i) $\pm 9 i$
(ii) $-1 \pm 2 i$
(iii) $-2 \pm \sqrt{3} i$
(iv) $0,-1 \pm 4 i$

Part B:
(i) $2+3 \mathrm{i}$
(ii) $\mathrm{p}=-4, \mathrm{q}=13$

