BHASVIC M α THS A1 DOUBLES ASSIGNMENT 9A

1

(i) Fully factorise the right-hand side of each equation.
(ii) Sketch the graph of each equation.
(a) $y=2 x^{3}+5 x^{2}-4 x-3$
(b) $y=2 x^{3}-17 x^{2}+38 x-15$
(c) $y=3 x^{3}+8 x^{2}+3 x-2$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

2

The diagram above shows a sketch of part of the curve C with equation

$$
y=x^{3}-10 x^{2}+k x,
$$

where k is a constant.
The point P on C is the maximum turning point.

Q2 continues on next slide

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

2
Given that the x-coordinate of P is 2 ,
(a) show that $k=28$.

The line through P parallel to the x-axis cuts the y-axis at the point N. The region R is bounded by C, the y-axis and $P N$, as shown shaded in the diagram above.
(b) Use calculus to find the exact area of R.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

3

Given $f(x)=x^{3}-2 x^{2}-7 x-4$
(a) Show that $(x+1)$ is a factor of $f(x)$.
(b) Factorise $f(x)$ completely, and hence sketch the graph of $y=f(x)$, giving the intercepts with the coordinate axes.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 9A

4

Evaluate $\int_{1}^{8} \frac{1}{\sqrt{x}} \mathrm{~d} x$, giving your answer in the form $a+b \sqrt{ } 2$, where a and b are integers.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

5

a) Given that $(x-1)$ is a factor of $5 x^{3}-9 x^{2}+2 x+a$, find the value of a.
b)

Given that $\frac{x^{2} 36}{x^{2} \quad 11 x+30} \quad \frac{25 x^{2}}{A x^{2}+B x+C} \quad \frac{6 x^{2}+7 x}{3 x^{2}+17 x} \quad 6 \quad \frac{3}{6 \quad x}$
find the values of the constants A, B and C, where A, B and C are integers.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 9A

6

Prove that:
a $(\tan \theta+\cot \theta)(\sin \theta+\cos \theta) \equiv \sec \theta+\operatorname{cosec} \theta$
c $(1-\sin x)(1+\operatorname{cosec} x) \equiv \cos x \cot x$
e $\frac{1}{\operatorname{cosec} \theta-1}+\frac{1}{\operatorname{cosec} \theta+1} \equiv 2 \sec \theta \tan \theta$
b $\frac{\operatorname{cosec} x}{\operatorname{cosec} x-\sin x} \equiv \sec ^{2} x$
d $\frac{\cot x}{\operatorname{cosec} x-1}-\frac{\cos x}{1+\sin x} \equiv 2 \tan x$
$\mathbf{f} \frac{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{1+\tan ^{2} \theta} \equiv \cos ^{2} \theta$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 9A

7

The specification for a new rectangular car park states that the length is to be 5 m more than the breadth. The perimeter of the car park is to be greater than 32 m and the area of the car park is to be less than $104 \mathrm{~cm}^{2}$
(a) Form a linear inequality for the perimeter and solve it to find the range of values of x.
(b) Form a quadratic inequality for the area and solve it to find the range of values for x.
(c) Determine the set of possible values for x.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

8

$$
\mathrm{f}(x)=x^{3}+(p+1) x^{2}-18 x+q \text {, where } p \text { and } q \text { are integers. }
$$

Given that $(x-4)$ is a factor of $\mathrm{f}(x)$,
(a) show that $16 p+q+8=0$.

Given that $(x+p)$ is also a factor of $\mathrm{f}(x)$, and that $p>0$,
(b) show that $p^{2}+18 p+q=0$.
(c) Hence find the value of p and the corresponding value of q.
(d) Factorise f(x) completely.

BHASVIC Ma'THS A1 DOUBLES ASSIGMMENT 9A

9

Split the following into partial fractions:
(a) $\frac{5 x^{2}-8 x+1}{(2 x)(x-1)^{2}}$
(b) $\frac{x^{2}}{x^{2}-4}$
(c) $\frac{1}{(x+1)(x+2)(x+3)}$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 9A

10

A circular pipe has outer diameter 4 cm and thickness $t \mathrm{~cm}$.
(a) Show that the area of the cross-section, $A \mathrm{~cm}^{2}$, is given by $A=\pi\left(4 t-t^{2}\right)$.
(b) Find the rate of increase of A with respect to t when $t=1 / 4$ and when $t=1 / 2$.

A piece of wire 16 cm long is cut into two pieces. Once piece is $8 x \mathrm{~cm}$ long and is bent to form a rectangle measuring $3 x$ by $x \mathrm{~cm}$. The other piece is bent to form a square.

Find in terms of x :
c) the length of a side of the square;
d) the area of the square.
e) show that the combined area of the rectangle and the square is $A \mathrm{~cm}^{2}$ where $A=$ $7 x^{2}-16 x+16$.

Find:
f) The value of x for which A has its minimum value;
g) the minimum value of A.

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 9A

11

$$
f(x)=x^{4}+3 x^{3}-5 x^{2}-3 x+1
$$

(a) Find the coordinates of the stationary points of $f(x)$, and determine the nature of each.
(b) Sketch the graph of $y=f(x)$.

BHASVIC M α THS

A1 DOUBLES ASSIGNMENT 9A
12
Sketch the curve of $y=x^{3}-6 x^{2}+9 x$ showing clearly the coordinates of any point where the curve touches or crosses the axes.
The point with coordinates $(-4,0)$ lies on the curve with equation
$y=(x-k)^{3}-6(x-k)^{2}+9(x-k)$
where k is a constant. Find the two possible values of k.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 9A

13
(a) Sketch, on the same axes, in the interval $0 \leq x \leq 180$, the graphs of

$$
y=\tan x^{\circ} \text { and } y=2 \cos x^{\circ},
$$

showing clearly the coordinates of the points at which the graphs meet the axes.
(b) Show that $\tan x^{\circ}=2 \cos x^{\circ}$ can be written as

$$
2 \sin ^{2} x^{\circ}+\sin x^{\circ}-2=0 .
$$

(c) Hence find the values of x, in the interval $0 \leq x \leq 180$, for which $\tan x^{\circ}=2 \cos x^{\circ}$.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 9A

14
Two circles C_{1} and C_{2} have equations

$$
(x-2)^{2}+y^{2}=9 \text { and }(x-5)^{2}+y^{2}=9
$$

respectively.
(a) For each of these circles state the radius and the coordinates of the centre.
(b) Sketch the circles C_{1} and C_{2} on the same diagram.
(c) Find the exact distance between the points of intersection of C_{1} and C_{2}.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 9A

1 - Answers

(a) (i) $(x-1)(x+3)(2 x+1)$
(ii)

(b) (i) $(x-3)(x-5)(2 x-1)$
(ii)

(c) (i) $(x+1)(x+2)(3 x-1)$
(iii)

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A
2 - Answers
(b) Area $=\frac{44}{3}\left(14 \frac{2}{3}\right.$ or 14.6$)$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 9A
3 - Answers
(a) Proof
(b) $(x+1)^{2}(x-4)$
(c) Graph

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 9A
4 - Answers

$-2+4 \sqrt{2}$

BHASVIC M α 'IHS
AI DOUBLES ASSIGNMENT 9A
5 - Answers

$$
\begin{aligned}
& a=2 \\
& A=2, B=-9 \text { and } C=-18
\end{aligned}
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 9A

6 - Answers

a L.H.S. $\equiv\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)(\sin \theta+\cos \theta)$

$$
\begin{aligned}
& \equiv \frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\cos \theta \sin \theta}(\sin \theta+\cos \theta) \\
& \equiv \frac{\sin \theta}{\sin \theta \cos \theta}+\frac{\cos \theta}{\cos \theta \sin \theta} \\
& \equiv \sec \theta+\operatorname{cosec} \theta \equiv \text { R.H.S. }
\end{aligned}
$$

b L.H.S. $\equiv \frac{\frac{1}{\sin x}}{\frac{1}{\sin x}-\sin x}$ $\equiv \frac{\frac{1}{\sin x}}{\frac{1-\sin x}{\sin x}} \equiv \frac{1}{\sin x} \times \frac{\sin x}{\cos ^{2} x} \equiv \frac{1}{\cos ^{2} x} \equiv \sec ^{2} x \equiv$ R.H.S.
c L.H.S. $\equiv 1-\sin x+\operatorname{cosec} x-1 \equiv \frac{1}{\sin x}-\sin x$ $\equiv \frac{1-\sin ^{2} x}{\sin x} \equiv \frac{\cos ^{2} x}{\sin x} \equiv \cos x \frac{\cos x}{\sin x} \equiv \cos x \cot x$ \equiv R.H.S.
d L.H.S. $\equiv \frac{\cot x(1+\sin x)-\cos x(\operatorname{cosec} x-1)}{(\operatorname{cosec} x-1)(1+\sin }$

$$
\begin{aligned}
& \equiv \frac{\cot x+\cos x-\cot x+\cos x}{\operatorname{cosec} x-1+1-\sin x} \equiv \frac{2 \cos x}{\operatorname{cosec} x-\sin x} \\
& \equiv \frac{2 \cos x}{\frac{1}{\sin x}-\sin x} \equiv \frac{2 \cos x}{\left(\frac{1-\sin ^{2} x}{\sin x}\right)} \equiv \frac{2 \cos x \sin x}{\cos ^{2} x} \\
& \equiv 2 \tan x \equiv \text { R.H.S. }
\end{aligned}
$$

e L.H.S $\equiv \frac{\operatorname{cosec} \theta+1+\operatorname{cosec} \theta-1}{\left(\operatorname{cosec}^{2} \theta-1\right)} \equiv \frac{2 \operatorname{cosec} \theta}{\cot ^{2} \theta}$
$\equiv \frac{2}{\sin \theta} \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \equiv \frac{2 \sin \theta}{\cos ^{2} \theta} \equiv \frac{2}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta}$
$\equiv 2 \sec \theta \tan \theta \equiv$ R.H.S.
f L.H.S. $\equiv \frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec ^{2} \theta} \equiv \frac{1}{\sec ^{2} \theta} \equiv \cos ^{2} \theta \equiv$ R.H.S.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 9A

7 - Answers

(a) $4 x-10>32, x>10.5$
(b) $x(x-5)<104,-8<x<13$
(c) $10.5<x<13$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A

8 - Answers

c) $p=2, q=-40$
d) $x^{3}+3 x-18 x-40=(x-4)(x+2)(x+5)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A

9 - Answers

a) $\frac{1}{2 x}+\frac{2}{(x-1)}-\frac{1}{(x-1)^{2}}$
b) $1+\frac{4}{x^{2}-4}$
c) $\frac{2}{2(x+1)}-\frac{1}{x+2}+\frac{1}{2(x+3)}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A
10 - Answers
(b) $\frac{7}{2} \pi ; 3 \pi$
(c) $4-2 x$
(d) $16-16 x+4 x^{2}$
(f) $x=1.143$
(g) $A=6.857$

BHASVIC M ${ }^{\prime}$ I'HS A1 DOUBLES ASSIGNMENT 9A

11-Answers

(a)(1,-3) local minimum; $(-3,-35)$ local minimum; $\left(-\frac{1}{4}, \frac{357}{256}\right)$ local maximum
(b) Check Desmos

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A
12-Answers
(a) Check on desmos
(b) -4 and -7

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 9A
13-Answers
a) Use Desmos to check
c) $x=51.3$
$x=128.7$ (accept 129)

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 9A
14- Answers
(a) $r=3$ (both circles)

Centres are at $(2,0)$ and $(5,0)$
(b)

c) $3 \sqrt{3}$

