BHASVIC M ${ }^{\prime}$ THS A1 DOUBLES ASSIGNMENT 7B

Joel buys a box of second-hand Jazz and Blues CDs at a car boot sale. In the box there are 30 CDs, 8 of which were recorded live. 16 of the CDs are predominantly Jazz and 13 of these were recorded in the studio. This information is shown in the following table.

	Studio	Live	Total
Jazz	13		16
Blues			
Total		8	30

(a) Copy and complete the table above. Joel picks a CD at random to play first.
Find the probability that it is
(b) a Blues CD that was recorded live,
(c) a Jazz CD, given that it was recorded in the studio.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7B

2

A particle of mass 2 kg lies on a rough plane. The plane is inclined to the horizontal at 30°.
The coefficient of friction between the particle and the plane is 0.25 . The particle is held in equilibrium by a force of magnitude P newtons. The force makes an angle of 20° with the horizontal and acts in a vertical plane containing a line of greatest slope of the plane, as shown in Figure 1. Find the least possible value of P.

Figure 1

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

Solve the following:
(a) $\log _{6} 4+\log _{6} x=2$
(b) $\log _{4}(x+1)-\log _{4} 3=1$
(c) $\log _{3}(x+1)-2 \log _{3} x=2$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

4

Remember, vertically you can use y, or $s_{y}=u_{y} t+{ }_{1} / 2$ at ${ }^{2}$, horizontally x or $s_{x}=u_{x} t$. For the Cartesian equation of the flight path, you need to eliminate t between these equations.

An arrow is fired from a bow with a speed of $50 \mathrm{~ms}^{-1}$ at an angle of 5° above the horizontal.
(a) Calculate the height of the arrow after 0.6 s .
(b) What is its speed after 6 s ?
(c) Find the acute angle that the arrow makes with the horizontal after 6 s ?
(d) Show that the equation of the flight of the arrow is

$$
y=(\tan 5) x-\left(\frac{4.9}{(50 \cos 5)^{2}}\right) x^{2}
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 7B

5

The triangle with vertices $(0,0),(1, p),(10,0)$ is right angled. Find the two possible values of p.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 7B

6

Particles A and B each of mass 20 kg are joined by a light inextensible string which passes over a smooth pulley so that the string hangs vertically on both sides. The system is in equilibrium.
a) Draw a force diagram to model this situation.
b) By considering each particle separately, find the tension T in the string.
c) How have you used the fact that the string is light in your model?
d) How have you used the fact that the string is inextensible in your model?
e) How have you used the fact that the pulley is smooth in your model?

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

7

A particle moves along a straight line. It accelerates from rest to a speed of 12 ms^{-1}. It then moves at a constant speed of $12 \mathrm{~ms}^{-1}$ for a period of time. Then the particle decelerates uniformly in twice the time for which it was accelerating, coming to rest after a total time of 19 seconds. Given that the total distance travelled by the particle is 174 m ,
(a) Sketch a speed-time graph to illustrate the motion of the particle.
(b) find the time for which the particle is travelling at constant speed.
(c) find the time for which to particle is accelerating, and the acceleration of the particle.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

8

A woman of mass 60 kg is in a lift.
(a) Draw a diagram showing the forces acting on the woman when the lift is stationary

Find the normal reaction of the floor of the lift on the woman in each of the following cases:
(b) The lift is moving upwards at a constant speed of $3 \mathrm{~ms}^{-1}$
(c) The lift is moving upwards with an acceleration of $2 \mathrm{~ms}^{-2}$ upwards
(d) The lift is moving downwards at an acceleration of $2 \mathrm{~ms}^{-2}$ downwards
(e) The lift is moving downwards and slowing down with a deceleration of $2 \mathrm{~ms}^{-2}$

In order to calculate the maximum number of people that can be safely carried in the lift, the following assumptions are made: the lift has mass 300 kg , all resistances to motion may be considered negligible and ignored, the mass of each occupant is 75 kg and the tension in the supporting cable should not exceed $12,000 \mathrm{~N}$.
(f) What is the maximum number of people who can be safely carried if the magnitude of the acceleration does not exceed $3 \mathrm{~ms}^{-2}$.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 7B

9

[In this question, the unit vectors \mathbf{i} and \mathbf{j} are in a vertical plane, \mathbf{i} being horizontal and \mathbf{j} being vertical]

A particle P is projected from a point A with position vector 20 m with respect to a fixed origin O. The velocity of projection is $(5 u \mathbf{i}+4 u \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. The particle moves freely under gravity, passing through a point B, which has position vector $(k \mathbf{i}+12 \mathbf{j}) \mathrm{m}$, where k is a constant, before reaching the point C on the x-axis, as shown in the figure below. The particle takes 4 s to move from A to B. Find
a) the value of u,
b) the value of k,
c) the angle the velocity of P makes with the x-axis as it reaches C.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 7B

10

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7B

11

A particle P is projected from a point O on level ground with speed $50 \mathrm{~ms}^{-1}$ at an angle Θ where
$\sin \Theta=\left(\frac{7}{25}\right)$ above the horizontal. Find:
(a) the height of P at the point where its horizontal displacement from 0 is 120 m,
(b) the speed of P two seconds after projection,
(c) the times after projection at which P is moving at an angle of $\tan ^{-1}\left(\frac{1}{6}\right)$ to the ground

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

12

A bag contains 64 coloured beads. There are r red beads, y yellow beads and 1 green bead
and $r+y+1=64$

Two beads are selected at random, one at a time without replacement.
(a)Find the probability that the green bead is one of the beads selected.

The probability that both of the beads are red is $\frac{5}{84}$
(b) Show that r satisfies the equation $r^{2}-r-240=0$
(c) Hence show that the only possible value of r is 16
(d) Given that at least one of the beads is red, find the probability that they are both red.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7B

13

Draw a labelled diagram, form labelled equations and re-arrange the equations to find the unknowns.

A stone that is modelled as a particle of mass $m \mathrm{~kg}$ sits on a smooth slope of angle 60° to the horizontal, it is held at rest by a light inextensible string parallel to the slope that is fixed at point A at the top of the slope. The tension in the string is 8 N . Find the mass of the particle and the size of the reaction force between the particle and the slope force, giving your answers to 3 sf.

A brick that is modelled as a particle of mass 5 kg sits on a smooth slope of angle α to the horizontal, it is held at rest by a light inextensible string parallel to the slope that is fixed at point A at the top of the slope. Given that the reaction force between the slope and the particle is 21 N . Find the angle α, and the tension in the string.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

13
The Venn diagram shows three events A, B and C, where p, q, r, s and t are probabilities.

$\mathrm{P}(A)=0.5$,
$\mathrm{P}(B)=0.6$ and $\mathrm{P}(C)=0.25$ and the events B and C are independent.
(a) Find the value of p and the value of q.
(b) Find the value of r.
(c) Hence write down the value of s and the value of t.
(d) State, giving a reason, whether or not the events A and B are independent.
(e) Find $\mathrm{P}(B \mid A \cup C)$.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

14
(i) Find the value of y for which

$$
1.01^{y-1}=500
$$

Give your answer to 2 decimal places.
(ii) Given that

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

(a) show that
$9 x^{2}+18 x-7=0$
(b) Hence solve the equation

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

15

1. Diane kept a diary during her stay in Cornwall in the Summer of 2015. These are extracts from her diary on the first day of every month between May and October. Use the large data set to find the month of each entry

A: After such a sunny day yesterday, it was disappointing that I only saw the sun briefly today.
B: It was the fourth dry day in a row. Beautiful sunny day although a bit on the cold side.
C: I was looking forward to today because I fancied going on a cliff top walk to look at the views. The weather let me down. It was cloudy all day and fairly windy.
D: It was a warm humid day.
E: Woke up late. It was pouring with rain outside and it was cold and windy. F: Sunshine and showers today. I went for a walk on the cliff tops and the views were amazing. I could see for miles, or so it seemed.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7B

15 continued

2. What is humidity?
3. Investigate the correlation between humidity and cloud cover.
4. Investigate the correlation between humidity and temperature

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 7B

1 - Answers

(a)

	Studio	Live	Total
Jazz	13	3	16
Blues	9	5	14
Total	22	8	30

(b) $\frac{1}{6}$
(c) $\frac{13}{22}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

2 - Answers

$$
\mathrm{P}=6.7
$$

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 7B

3 - Answers
(a) 9
(b) 11
(c) 0.393

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

4 - Answers
(a) 0.85 m
(b) $74 \mathrm{~ms}^{-1}$
(c) 47.5°

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

5 - Answers

$$
p= \pm 3
$$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

6 - Answers

(a) Diagram checked by your teacher.
(b) $\mathrm{T}=20 \mathrm{~g} \mathrm{~N}$
(c) "tension at A is the same magnitude as tension at B "
(d) "acceleration of A is same magnitude as acceleration of

B" (in this case there's no acceleration as it's in equilibrium)
(e) "tensions in two parts of the string are the same" (if there was friction in the pulley it makes sense that this would NOT be true, right?)

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

7 - Answers

(b) 10 seconds
(c) 3 seconds, $a=4 \mathrm{~ms}^{-2}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

8 - Answers
(b) 588 N
(c) 708 N
(d) 468 N
(e) 708
(f) 8 people

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

9 - Answers

(a) $\mathrm{m}=0.943 \mathrm{~kg}$ (3 sf) $\mathrm{R}=4.62 \mathrm{~N}$ (3sf)
(b) $\alpha=64.6^{\circ}$ (3sf), $\mathrm{T}=44.3 \mathrm{~N}$ (3sf)

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7B

10 - Answers

(a) 4.4
(b) 88
(c) 50° (2 s.f.)

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

11-Answers

$$
T=18.5 \mathrm{~N} \quad R=88.8 \mathrm{~N}
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7B

11-Answers
a) 4.4 m
b) $48 \mathrm{~ms}^{-1}$
c) 0.61 s and 2.2 s

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 7B

12-Answers
(a) $\frac{1}{32}$
(c) $r=16$
(d) $\frac{5}{37}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 7B

13-Answers

(a) 0.15
(b) 0.22
(c) 0.28
(d) Not independent
(e) $\frac{43}{75}$

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 7B

14 - Answers
(i) 625.56
(iii) $\frac{1}{3}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 7B

15 - Answers

1)

A: August 1st
B: October 1st
C: May 1st
D: July 1st
E: June 1st
F: September 1st
2. Humidity is a term used to describe the amount of water vapour present in air.

