1

Evaluate the exact value of the following integrals (you must show your working out):

(a)
$$\int_{0}^{1} 2x - 1 dx$$

$$\int_{1}^{4} \sqrt{x} - 2dx$$

(c)
$$\int_{1}^{2} \frac{x^2 + 2}{4x^2} dx$$

TAP FOR ANSWERS

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

2

Solve the following equations on the interval $0 \le x \le 360$

- (a) $\sin(x + 30) = -0.2$
- (b) $\cos(2x) = -0.8$
- (c) $\tan\left(\frac{x}{2}\right) = -0.3$

3

The graph shown is the curve of y = f(x)

The curve crosses the x axis at $A\left(\frac{8}{5}, O\right)$ and $B\left(\frac{16}{5}, O\right)$

and has a turning point at $Q\left(\frac{7}{2}, -3\right)$

Sketch, showing the new coordinates of A, B and C: a) y = f(2x)

b)y =
$$3f(x)$$
 c) y = $f(x) + 3$

4

a)
$$f(x) = ax^2$$
, where a is a constant.
Prove, from first principles that $f'(x) = 2ax$

b)
$$f(x) = \frac{1}{x}$$

Prove, from first principles that $f'(x) = \frac{1}{x^2}$

TAP FOR ANSWERS

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

5

Simplify each of the following expressions:

(a)
$$1 - \cos^2 \frac{1}{2}\theta$$

(b)
$$5\sin^2 3\theta + 5\cos^2 3\theta$$

(c)
$$\sin^2 A - 1$$

(d)
$$\frac{\sin \theta}{\tan \theta}$$

$$(e) \frac{\sqrt{1-\cos^2 x}}{\cos x}$$

(f)
$$\frac{\sqrt{1-\cos^2 3A}}{\sqrt{1-\sin^2 3A}}$$

(g)
$$(1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$$

(h)
$$\sin^4\theta + \sin^2\theta \cos^2\theta$$

(i)
$$\sin^4\theta + 2\sin^2\theta\cos^2\theta + \cos^4\theta$$

6

Solve the following equation in the range $0 \le x \le 360^{\circ}$

$$cosec^{2}\left(\frac{x}{2}\right) = \sqrt{3}\cot\left(\frac{x}{2}\right) + 1$$

7

Figure 3 shows a sketch of part of the curve with equation

$$y = 7x^2 (5 - 2\sqrt{x}), \quad x \geqslant 0$$

The curve has a turning point at the point A, where x > 0, as shown in Figure 3.

(a) Using calculus, find the coordinates of the point *A*.

The curve crosses the x-axis at the point B, as shown.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the line through A parallel to the x-axis and the line through B parallel to the y-axis.

(c) Use integration to find the area of the region R, giving your answer to 2 decimal places.

8

a) Given that (x + 2) and (x - 3) are factors of $gx^3 + hx^2 - 14x + 24$, find the values of g and h.

a)
$$f(x) = 2x^4 - 5x^3 - 42x^2 - 9x + 54$$

i) Show that $f(1) = 0$ and $f(-3) = 0$
ii) Hence, solve $f(x) = 0$

9

Express as partial fractions.

a)
$$\frac{5x+11}{(x+1)(x+4)}$$

b)
$$\frac{3}{(x-3)(x^2+x-2)}$$

10

a) Show that

$$x^2 + 2kx + 9 \ge 0$$

for all real values of x, if $k^2 \le 9$.

b) Find the range of values of k that gives this equation two distinct real roots.

$$k(x^2 + 1) = x - k$$

11

A sweet manufacturer estimates that if it sets the price of a box of speciality chocolates at £p it will sell n boxes per year, where $n = 1000(84 + 12p - p^2)$, for $2.5 \le p \le 15$.

- a) Find the price that maximises the number of boxes sold.
- b) Write down the revenue received by selling n boxes at price $\pm p$.
- c) Hence show that the price that will maximise the manufacturer's revenue is £10.50, to the nearest 50 pence.

12

The curve C has the equation $y = x^2 + 4$. The normal to C at P(1,5) meets the x-axis at Q.

Find the area bounded by the x-axis, the y –axis, the curve and the line PQ.

13

Express as partial fractions.

a)
$$\frac{4-7x}{(x+3)(x-2)^2}$$

b)
$$\frac{(x^2+1)^2}{x^2(x^2-1)}$$

14

Factorise each polynomial completely and sketch the graph.

a)
$$x^3 - 4x^2 + x + 6$$
 has a factor $x - 2$

b)
$$4x^3 - 13x - 6$$
 has a factor $2x + 3$

c)
$$x^4 - 13x^2 + 36$$
 has a factor $x^2 - 4$

d)
$$x^3$$
 –8 has a factor $x - 2$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 7A

- (a) 0
- (b) $-\frac{3}{4}$
- (c) $\frac{1}{2}$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

- (a) 161.54, 318.46
- (b) 71.57, 108.44, 251.57, 288.44
- (c) 326.6

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

- a) x coordinates only are halved
- b) y coordinates only are tripled
- c) y coordinates only increase by 3 units.

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

- (a) $\sin^2 \frac{\theta}{2}$
- (b) 5
- $(c) \cos^2 A$
- (d) $\cos \theta$
- (e) $\tan x$
- (f) $\tan 3A$
- (g) 4
- (h) $\sin^2 \theta$
- (i) 1

BHASVIC Maths A1 DOUBLES ASSIGNMENT 7A

7 - Answers

(a)
$$x=4$$
, $y=112$

$$(b)x = \frac{25}{4}$$

(c) 79.77

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

a)
$$g = 3, h = -7$$

b) $x = -3, x = \frac{-3}{2}, x = 1, x = 6$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

a)
$$\frac{2}{x+1} + \frac{3}{x+4}$$

$$b)\frac{3}{10(x-3)} + \frac{1}{5(x+2)} - \frac{1}{2(x-1)}$$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

10 - Answers

a) hint: use the discriminant

b)
$$-\frac{\sqrt{2}}{4} < k < \frac{\sqrt{2}}{4}$$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

a) £6
b) £
$$np = £1000p(84 + 12p - p^2)$$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

$$29\frac{1}{3}$$
 sq units

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

a)
$$\frac{1}{x+3} - \frac{1}{x-2} - \frac{2}{(x-2)^2}$$

b)
$$1 - \frac{1}{x^2} + \frac{2}{x-1} - \frac{2}{x+1}$$

BHASVIC MαTHS A1 DOUBLES ASSIGNMENT 7A

a)
$$(x-2)(x-3)(x+1)$$

b) $(2x+3)(2x+1)(x-2)$
c) $(x+2)(x-2)(x+3)(x-3)$
d) $(x-2)(x+2)^2$