BHASVIC M α THS A1 DOUBLES ASSIGNMENT 7A

1

Evaluate the exact value of the following integrals (you must show your working out):
(a)

$$
\int_{0}^{1} 2 x-1 d x
$$

(b)

$$
\int_{1}^{4} \sqrt{x}-2 d x
$$

(c)

$$
\int_{1}^{2} \frac{x^{2}+2}{4 x^{2}} d x
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 7A

2

Solve the following equations on the interval $0 \leq x \leq 360$
(a) $\sin (x+30)=-0.2$
(b) $\cos (2 x)=-0.8$
(c) $\tan \left(\frac{x}{2}\right)=-0.3$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7A

3

The graph shown is the curve of $y=f(x)$
The curve crosses the x axis at $A\left(\frac{8}{5}, 0\right)$ and $B\left(\frac{16}{5}, 0\right)$
and has a turning point at $Q\left(\frac{7}{2},-3\right)$

Sketch, showing the new coordinates of A, B and C : a) $y=f(2 x)$
b) $y=3 f(x)$
c) $y=f(x)+3$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7A

4
a) $f(x)=a x^{2}$, where a is a constant.

Prove, from first principles that $f^{\prime}(x)=2 a x$
b) $f(x)=\frac{1}{x}$

Prove, from first principles that $f^{\prime}(x)=\frac{1}{x^{2}}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7A

5

Simplify each of the following expressions:
(a) $1-\cos ^{2} \frac{1}{2} \theta$
(g) $(1+\sin x)^{2}+(1-\sin x)^{2}+2 \cos ^{2} x$
(b) $5 \sin ^{2} 3 \theta+5 \cos ^{2} 3 \theta$
(h) $\sin ^{4} \theta+\sin ^{2} \theta \cos ^{2} \theta$
(c) $\sin ^{2} A-1$
(i) $\sin ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta$
(d) $\frac{\sin \theta}{\tan \theta}$
(e) $\frac{\sqrt{1-\cos ^{2} x}}{\cos x}$
(f) $\frac{\sqrt{1-\cos ^{2} 3 A}}{\sqrt{1-\sin ^{2} 3 A}}$

BHASVIC M α THS

A1 DOUBLES ASSIGNMENT 7A

6

Solve the following equation in the range $0 \leq x \leq 360^{\circ}$
$\operatorname{cosec}^{2}\left(\frac{x}{2}\right)=\sqrt{3} \cot \left(\frac{x}{2}\right)+1$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 7A

7

Figure 3 shows a sketch of part of the curve with equation
$y=7 x^{2}(5-2 \sqrt{x}), \quad x \geqslant 0$
The curve has a turning point at the point A, where $x>0$, as shown in Figure 3.
(a) Using calculus, find the coordinates of the point A.

The curve crosses the x-axis at the point B, as shown.
(b)

Use algebra to find the x coordinate of the point B.
Figure 3
The finite region R, shown shaded in Figure 3, is bounded by the curve, the line through A parallel to the x-axis and the line through B parallel to the y-axis.
(c) Use integration to find the area of the region R, giving your answer to 2 decimal places.

8

a) Given that $(x+2)$ and $(x-3)$ are factors of $g x^{3}+h x^{2}-14 x+24$, find the values of g and h.
a) $f(x)=2 x^{4}-5 x^{3}-42 x^{2}-9 x+54$
i) Show that $\mathrm{f}(1)=0$ and $\mathrm{f}(-3)=0$
ii) Hence, solve $f(x)=0$

Express as partial fractions.

$$
\begin{aligned}
& \text { a) } \frac{5 x+11}{(x+1)(x+4)} \\
& \text { b) } \frac{3}{(x-3)\left(x^{2}+x-2\right)}
\end{aligned}
$$

A1 DOUBLES ASSIGNMENT 7A

10

a) Show that

$$
x^{2}+2 k x+9 \geq 0
$$

for all real values of x, if $k^{2} \leq 9$.
b) Find the range of values of k that gives this equation two distinct real roots.

$$
k\left(x^{2}+1\right)=x-k
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7A

11

A sweet manufacturer estimates that if it sets the price of a box of speciality chocolates at $£ p$ it will sell n boxes per year, where $n=1000\left(84+12 p-p^{2}\right)$, for $2.5 \leq p \leq 15$.
a) Find the price that maximises the number of boxes sold.
b) Write down the revenue received by selling n boxes at price $£ p$.
c) Hence show that the price that will maximise the manufacturer's revenue is $£ 10.50$, to the nearest 50 pence.

12

The curve C has the equation $y=x^{2}+4$. The normal to C at $\mathrm{P}(1,5)$ meets the x-axis at Q .

Find the area bounded by the x-axis, the y-axis, the curve and the line PQ .

Express as partial fractions.
a) $\frac{4-7 x}{(x+3)(x-2)^{2}}$
b) $\frac{\left(x^{2}+1\right)^{2}}{x^{2}\left(x^{2}-1\right)}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A

14

Factorise each polynomial completely and sketch the graph.
a) $x^{3}-4 x^{2}+x+6$ has a factor $x-2$
b) $4 x^{3}-13 x-6$ has a factor $2 x+3$
c) $x^{4}-13 x^{2}+36$ has a factor $x^{2}-4$
d) $x^{3}-8$ has a factor $x-2$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 7A

1 - Answers

(a) 0
(b) $-\frac{3}{4}$
(c) $1 / 2$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 7A

2 - Answers

(a) $161.54,318.46$
(b) $71.57,108.44,251.57,288.44$
(c) 326.6

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 7A

3 - Answers

a) x coordinates only are halved
b) y coordinates only are tripled
c) y coordinates only increase by 3 units.

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A
4 - Answers

5 - Answers

(a) $\sin ^{2} \frac{\theta}{2}$
(b) 5
(c) $-\cos ^{2} A$
(d) $\cos \theta$
(e) $\tan x$
(f) $\tan 3 A$
(g) 4
(h) $\sin ^{2} \theta$
(i) 1

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A
6 - Answers
$60^{\circ}, 180^{\circ}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A
7 - Answers
(a) $x=4, y=112$
(b) $x=\frac{25}{4}$
(c) 79.77

BHASVIC MaTHS
Al DOUBLES ASSIGNMENT TA
8 - Answers
a) $g=3, h=-7$
b) $x=-3, x=\frac{-3}{2}, x=1, x=6$

BHASVIC MaTHS
A1 DOUBLES ASSIGNMENT 7A

9 - Answers

$$
\text { a) } \frac{2}{x+1}+\frac{3}{x+4}
$$

b) $\frac{3}{10(x-3)}+\frac{1}{5(x+2)}-\frac{1}{2(x-1)}$

BHASVIC MaTHS

A1 DOUBLES ASSIGNMENT 7A

10 - Answers

a) hint: use the discriminant
b) $-\frac{\sqrt{2}}{4}<k<\frac{\sqrt{2}}{4}$

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 7A
11-Answers
a) $£ 6$
b) $£ n p=£ 1000 p\left(84+12 p-p^{2}\right)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A
12 - Answers

$29 \frac{1}{3}$ squnits

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 7A
13 - Answers
a) $\frac{1}{x+3}-\frac{1}{x-2}-\frac{2}{(x-2)^{2}}$
b) $1-\frac{1}{x^{2}}+\frac{2}{x-1}-\frac{2}{x+1}$

BHASVIC MaTHS

A1 DOUBLES ASSIGNMENT 7A

14 - Answers

a) $(x-2)(x-3)(x+1)$
b) $(2 x+3)(2 x+1)(x-2)$
c) $(x+2)(x-2)(x+3)(x-3)$
d) $(x-2)(x+2)^{2}$

