BHASVIC M α THS A1 DOUBLES ASSIGNMENT 5A

1

Sketch the following curves of $y=f(x)$, showing the coordinates of the turning point and any points of intersection with the coordinate axes:
(a) $f(x)=4 x-x^{2}$
(b) $f(x)=16-x^{2}$
(c) $f(x)=2 x^{2}+4 x$

Find $\frac{d y}{d x}$ when:
(a) $y=\frac{3 x+2}{2 x^{2}}$
(b) $y=\frac{5-2 \sqrt{x}}{x^{3}}$
(c) $y=\frac{1-2 x}{x \sqrt{x}}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

3

(a) Given $f(x)=(x)=2 x^{2}-3 x+4$ and $g(x)=4 x+1$

Sketch the graphs of $y=f(x)$ and $y=g(x)$ on the same axes
(b) Find the coordinates of any points of intersection.
(c) Write down the set of values for which $f(x)>g(x)$
(d) Write down the set of values for which $f(x)<g(x)$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

4

The number of bacteria in a refrigerated food is given by

$$
N=20 T^{2}+120-20 T, \quad T>0
$$

where T is the temperature of food in ${ }^{0} \mathrm{C}$
(a) Express N in the form $p(T-q)^{2}+r$ where p, q, r are to be found
(b) What is the minimal number of bacteria and what is the temperature when this occurs?
(c) Find the temperature to 3 sf when the number of bacteria is 140
(d) Explain why $T>0$.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

5

The curve C_{1} has equation $y=-\frac{a}{x^{2}}$ where a is a positive constant. The curve C_{2} has the equation $y=x^{2}(3 x+b)$ where b is a positive constant.
(a) Sketch C_{1} and C_{2} on the same set of axes, showing clearly the coordinates of any point where the curves touch of cross the axes.
(b) Using your sketch state, giving reasons, the number of solutions to the equation $x^{4}(3 x+b)+a=0$.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

6

(i) Solve the following equations on the interval $0 \leq x \leq 2 \pi$
(a) $\sin 3 x=-1$
(b) $\cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{2}}$
(c) $\tan \left(x+\frac{3 \pi}{2}\right)=-1.4$
(ii) Prove the following identity:

$$
\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 5A

(a) Find an equation of the tangent and the normal at the point where $x=2$ on the curve with equation $y=\frac{8}{x}-x+3 x^{2}, x>0$.
(b) The normals to the curve $2 y=3 x^{3}-7 x^{2}+4 x$, at the points $O(0,0)$ and $A(1,0)$, meet at the point N.
(i) Find the coordinates of N.
(ii) Calculate the area of triangle $O A N$.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 5A

Solve, for $0 \leq \theta<180^{\circ}$, the equation
$2 \cot ^{2} \theta-9 \operatorname{cosec} \theta=3$,
giving your answers to 1 decimal place.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

9

If $\frac{d y}{d x}=x^{2}, y=\frac{x^{3}}{3}+c$ and if $\frac{d y}{d x}=4 x^{5} \quad y=\frac{2 x^{3}}{3}+c$.
In general when $\frac{d y}{d x}=a x^{n}, y=\frac{a x^{n+1}}{n+1}+c$
We set out an integration like this: $\int x^{2} d x=\frac{x}{3}+6$.
Integrate the following:
(a) $\int x^{3} d x=$
(b) $\int 3 x^{2} d x=$
(c) $\int \frac{2}{5} x^{4} d x=$
(d) $\int 5 x^{\frac{3}{2}} d x=$
(e) $\int 2 x^{-2} d x=$

You can differentiate your answers to check they are correct.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5A

10
(a) Evaluate the following

$$
\lim _{\delta x \rightarrow 0} \sum_{x=\frac{1}{2}}^{1} \frac{4-x}{2 x^{3}} \delta x
$$

(b) The curve with equation $y=f(x)$ passes through the point $(8,7)$. Given that $f^{\prime}(x)=4 x^{\frac{1}{3}}-5$, find $f(x)$.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 5A

11

(i) Use differentiation from first principles to prove that $\frac{d}{d x}\left(1-2 x^{3}\right)=-6 x^{2}$
(ii) A cuboid has base of width $x \mathrm{~cm}$, length $2 x \mathrm{~cm}$ and height $h \mathrm{~cm}$. Its volume is $72 \mathrm{~cm}^{2}$.
(a) Show that is surface area is given by $\mathrm{SA}=4 x^{2}+\frac{216}{x}$.
b) Find the value of x for which the surface area is a minimum.
c) Prove that the answer to part (b) gives a minimum surface area.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 5A

12

(i) Use set notation to describe the set of values of x for which:
(a) $x^{2}-7 x+10<0$ and $3 x+5<17$
(b) $x^{2}-x-6>0$ and $10-2 x<5$
(c) $4 x^{2}-3 x-1<0$ and $4(x+2)<15(x+7)$
(d) $2 x^{2}-x-1<0$ and $14<3 x-2$
(e) $x^{2}-x-12>0$ and $3 x+17>2$
(f) $x^{2}-2 x-3<0$ and $x^{2}-3 x+2>0$
(ii) Find the possible values of k for the quadratic equation $2 k x^{2}+5 k x+5 k-$ $3=0$ to have real roots.
(iii) A straight line has equation $y=2 x-k$ and a parabola has equation $y=$
$3 x^{2}+2 k x+5$ where k is a constant. Find the range of values of k for which the line and parabola do not intersect.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5A

13

The line l_{1} has equation $x+2 y-1=0$. The line l_{2} is perpendicular to l_{1} and passes through the point $A(1,5)$.
(a) Show that l_{1} and l_{2} cross at the point $(-1,1)$

The points $B(-3,2)$ and $C(3,-1)$ lie on l_{1}.
(b) Find the area of the triangle with vertices A, B, C.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 5A

14
$\mathrm{f}(x)=x^{2}-2 \mathrm{x}-8$
(a) Sketch the graph of $y=\mathrm{f}(x)$
(b) On the same set of axes, sketch the graph of $y=\mathrm{f}^{\prime}(x)$
(c) Explain why the x-coordinate of the turning point of $y=\mathrm{f}(x)$ is the same as the x-coordinate of the point where the graph of $y=\mathrm{f}^{\prime}(x)$ crosses the x-axis

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 5A

1 - Answers

(a) intercepts $(0,0),(4,0)$, turning point $(2,4)$
(b) intercepts $(-4,0),(4,0),(0,16)$ turning point $(0,16)$
(c) intercepts $(-2,0),(0,0)$ turning point $(-1,-2)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A
2 - Answers
(a) $-\frac{3}{2} x^{-2}-2 x^{-3}$
(b) $-15 x^{-4}+5 x^{-\frac{7}{2}}$
(c) $-\frac{3}{2} x^{-\frac{5}{2}}+x^{-\frac{3}{2}}$

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 5A

3 - Answers

(a)
(b) $\left(\frac{1}{2}, 3\right)(3,13)$
(c) $x<\frac{1}{2}$ or $x>3$
(d) $\frac{1}{2}<x<3$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 5A

4 - Answers

(a) $p=20, q=0.5, r=115$
(b) $\operatorname{Min}=115$ when $\mathrm{T}=0.5$
(c) $1.62^{\circ} \mathrm{C}$
(d) The amount of bacteria doesn't increase if the temperature goes down

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 5A

5 - Answers

(a)

(b) 1; only one intersection of the two curves.

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 5A

6 - Answers

(ii) (a) $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(b) $\frac{\pi}{2}$
(c) $0.62,3.76$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A

7 - Answers

(a) $9 x-y-4=0$ and $9 y+x-128=0$
(b)
(i) $\left(\frac{4}{5},-\frac{2}{5}\right)$
(ii) $\frac{1}{5}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A
8 - Answers
$\theta=11.5^{\circ}, 168.5^{\circ}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A

9 - Answers

(a) $\frac{x^{4}}{4}+c$
(b) $x^{3}+c$
(c) $\frac{2}{25} x^{5}+c$
(d) $2 x^{\frac{5}{2}}+c$
(e) $-2 x^{-1}+c$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A

10 - Answers

(a) $\frac{5}{2}$
(b) $f(x)=3 x^{\frac{4}{3}}-5 x-1$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5A
11-Answers
(b) $x=3$

A1 DOUBLES ASSIGNMENT 5A

12 - Answers

(i) (a) $\{x: 2<x<4\}$
(b) $\{x: x>3\}$
(c) $\left\{x:-\frac{1}{4}<x<1\right\}$
(d) No values
(e) $\{x:(-5<x<-3) \cup(x>4)\}$
(f) $\{x:(-1<x<1) \cup(2<x<3)\}$
(ii) $0 \leq k \leq \frac{8}{5}$
(iii) $-2<k<7$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 5A
13-Answers
(a) $(-1,1)$
(b) 15

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 5A
14 - Answers
(a) Sketches
(b) Discuss in class
(c) Discuss in class

