BHASVIC M α THS A1 DOUBLES ASSIGNMENT 4A

1

The points A and B have coordinates $(-2,-7)$ and $(3,8)$ respectively.
(a) Find the coordinates of the point at which the line through $A B$ crosses the x axis.

The mid-point of $A B$ lies on the line with equation $y=k x$, where k is a constant.
(b) Find the value of k.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 4A

2

Differentiate the following (remember to convert to the form $a x^{n}+\beta x^{m}$ first)
(a) $\frac{3 x+2}{\sqrt{x}}$
(b) $\frac{2 \sqrt{x}-1}{x}$
(c) $\frac{x^{2}-1}{4 \sqrt{x}}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 4A

3

Given

$$
f(x)=(x-3)(x-2)(x-1)
$$

The factors of $f(x)$ are $(x-3)$ and $(x-2)$ and $(x-1)$
It is also clear that $f(3)=0, f(2)=0$ and $f(1)=0$.
From this example we can infer that for any polynomial $f(x)$, if an α can be found such that $f(\alpha)=0$, then $(x-\alpha)$ is a factor of $f(x)$

Try subbing in factors of -6 to find the three factors of the function below

$$
f(x)=x^{3}-7 x-6
$$

Hence write $f(x)$ in the form $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 4A

4

Find the equation of the normal to the curve at the point where $x=1$
(a) $y=x^{2}-3 x$
(b) $y=\frac{7}{x^{3}}$
(c) $y=\frac{4-3 x^{2}}{x}$
(d) Find the equation of the normal to $y=3 x^{2}-x+1$ at $x=0$
(e) Find the equation of the normal to $y=2 x+\frac{1}{x}$ at $x=\frac{1}{2}$
(f) Find the equation of the normal to $y=x^{3}+x^{2}$ at $x=1$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 4A

5

A curve has the equation $y=x+\frac{3}{x}, x \neq 0$.
The point P on the curve has x coordinate 1 .
(a) Show that the gradient of the curve at P is -2 .
(b) Find an equation for the normal to the curve at P, giving your answer in the form $y=m x+c$.
(c) Find the coordinates of the point where the normal to the curve at P intersects the curve again

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 4A

6

Find the values of x from 0 to 2π inclusive of the following equations. Give the answers in terms of π where possible, otherwise to $2 \mathrm{~d} . \mathrm{p}$.
(a) $\tan x=\frac{1}{\sqrt{3}}$
(b) $\sin x=0.7$
(c) $\cos \left(x+\frac{\pi}{3}\right)=\frac{1}{2}$
(d) $\sin \left(x-\frac{\pi}{6}\right)=1$
(e) $\cos x=-\frac{1}{\sqrt{3}}$
(f) $\tan x=0.2$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 4A

Find the values of x from 0 to 2π inclusive of the following equations, giving the answers in terms of π.
(a) $\sin ^{2} x=\frac{1}{4}$
(b) $\tan ^{2} x=\frac{1}{3}$
(c) $\sin 2 x=\frac{1}{2}$
(d) $\tan 2 x=-1$
(e) $\cos 3 x=\frac{\sqrt{3}}{2}$
(f) $\sin 3 x=-1$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 4A

8

Solve the following equations on the interval $0 \leq x \leq 360$
(a) $\sin (x-45)=\frac{\sqrt{3}}{2}$
(b) $\cos (-x)=0.2$
(c) $\tan (x-180)=-\sqrt{3}$

9

Prove the following identities:
(a) $\sec x+\tan x \equiv \frac{1}{\sec x-\tan x}$
(b) $\frac{\tan x \sec x}{1+\tan ^{2} x} \equiv \sin x$
(c) $\cot x+\tan x=\sec x \operatorname{cosec} x$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 4A

10

Prove the following identities: set out your proof correctly
(a) $\cos \theta+\sin \theta \tan \theta \equiv \sec \theta$
(b) $\sin ^{2} x\left(1+\sec ^{2} x\right) \equiv \sec ^{2} x-\cos ^{2} x$
(c) $\frac{\sin \theta}{1+\cos \theta}+\frac{1-\cos \theta}{\sin \theta} \equiv \frac{2 \sin \theta}{1+\cos \theta}$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 4A

11

Prove that the equation $\frac{4 x+3}{2 x-1}+\frac{6 x+1}{2 x+3}=3$ has no real roots

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 4A

12

The normals to the curve $2 y=3 x^{3}-7 x^{2}+4 x$, at the points $O(0,0)$ and $A(1,0)$, meet at the point N.
Find the coordinates of N.
Calculate the area of triangle $O A N$.

BHASVIC M α THS

A1 DOUBLES ASSIGNMENT 4A

13

(a) Solve the equation $1+\tan ^{2} x=3 \tan x-1$ on the interval $-\boldsymbol{\pi} \leq \boldsymbol{x} \leq \boldsymbol{\pi}$
(b) Use the identity $\frac{\sin x}{\cos x} \equiv \tan x$ to solve the equation $\sqrt{3} \cos x=\sin x$ on the interval $0 \leq x \leq 2 \pi$
(c) Use the identity $\sin ^{2} x \equiv 1-\cos ^{2} x$ to solve the equation $3-3 \cos x=2 \sin ^{2} x$ on the interval $0 \leq x \leq 2 \pi$
(d) Solve the following equation on the interval $0 \leq \theta \leq 2 \pi$. Give exact answers.

$$
\sec ^{2} x+\tan x-1=0
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 4A

14

$$
f(x)=\frac{1}{x}
$$

(a) Given that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, show that $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-1}{x^{2}+x h}$
(b) Deduce that $f^{\prime}(x)=-\frac{1}{x^{2}}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 4A

1 - Answers

(a) line AB is $3 x-y-1=0$ so coordinate is $\left(\frac{1}{3}, 0\right)$
(b) $k=1$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 4A
2 - Answers
(a) $\frac{3}{2} x^{-\frac{1}{2}}-x^{-\frac{3}{2}}$
(b) $-x^{-\frac{3}{2}}+x^{-2}$
(c) $\frac{3}{8} x^{\frac{1}{2}}+\frac{1}{8} x^{-\frac{3}{2}}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
3 - Answers

$$
f(x)=(x+1)(x+2)(x-3)
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A

4 - Answers

(a) $x-3-y=0$
(b) $x-21 y+146=0$
(c) $x-7 y+6=0$
(d) $x-y+1=0$
(e) $2 x-4 y+11=0$
(f) $x+5 y-11=0$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 4A
5 - Answers
(b) $y=\frac{1}{2} x+\frac{7}{2}$
(c) $\left(6, \frac{13}{2}\right)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 4A

6 - Answers

(a) $\frac{\pi}{6}, \frac{7 \pi}{6}$
(b) $0.78,2.37$
(c) $0, \frac{4 \pi}{3}, 2 \pi$
(d) $\frac{2 \pi}{3}$
(e) $2.19,4.10$
(f) $0.20,3.34$

A1 DOUBLES ASSIGNMENT 4A

7 - Answers

a) $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
b) $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
c) $\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$
d) $\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$
e) $\frac{\pi}{18}, \frac{11 \pi}{18}, \frac{13 \pi}{18}, \frac{23 \pi}{18}, \frac{25 \pi}{18}, \frac{35 \pi}{18}$
f) $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
8 - Answers
(a) $105^{\circ}, 165^{\circ}$
(b) $78.5^{\circ}, 281.5^{\circ}$
(c) $120^{\circ}, 300^{\circ}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
9 - Answers
Proof

TAP TO RETURN

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A

10 - Answers

Proof

TAP TO RETURN

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
11-Answers
Proof

TAP TO RETURN

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
12-Answers
a) $\left(\frac{4}{5},-\frac{2}{5}\right)$
b) $\frac{1}{5}$

BHASVIC M α THS

A1 DOUBLES ASSIGNMENT 4A

13 - Answers

(a) $-2.03,1.11,-\frac{3 \pi}{4}, \frac{\pi}{4}$
(b) $\frac{\pi}{3}, \frac{4 \pi}{3}$
(c) $0, \frac{\pi}{3}, \frac{5 \pi}{3}, 2 \pi$
(d) $0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}, 2 \pi$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 4A
14 - Answers
Proof

