BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 3A

1

1. Use the rule that if $y=a x^{n}$, then the gradient is given by $\frac{d y}{d x}=n a x^{n-1}$ to find the gradient of the following graphs at the point where $x=3$
(a) $y=x^{2}$
(b) $y=3 x^{2}$
(c) $y=4 x^{3}$
(d) $y=8 x^{5}$
2. In each of the following y is given as a function of x. Find the derived function $\frac{d y}{d x}$
(a) $y=\left(2 x^{2}+3\right)(x+1)$
(Hint: Expand first!)
(b) $y=\sqrt[5]{x}$
(c) $y=2 x^{-5}$
(d) $y=x^{2}-x^{-2}$
(e) $y=x\left(x^{2}-3\right)$
(f) $y=\frac{x^{3}-1}{2 x}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 3A

2

Sketch the following, stating the x and y intercepts and the equations of any asymptotes:
(a) $y=(x-3)(x+3)(x-2)(x+2)$
(b) $y=x(x+3)^{2}(x-2)$
(c) $y=\frac{1}{x-1}+2$
(d) $y=64 x-9 x^{3}$
(e) $y=\frac{2}{x^{2}}$
(f) $y=\sin 3 x$
(g) $y=\cos \left(\frac{x}{2}\right)$
(h) $y=\tan \left(x+\frac{3 \pi}{2}\right)$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 3A

3

A quadratic graph $y=a x^{2}+b x+c$ has a minimum point at $(4,-3)$ and passes through the point $(5,0)$. Find the values of a, b and c.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 3A

4

One pair of solutions for the simultaneous equations
$y=k x+3$
$2 x^{2}-x y=-7$

Is $(1, m)$ where k and m are constants.
(a) Find the values of k and m.
(b) Find the second pair of solutions for the simultaneous equations

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 3A

5

(a) A line passes through points $(p, 3),(p+2,5)$ and $(1,2)$ where $p>0$. Find the value of p.
(b) The midpoint of $(5, p)$ and $(q, 10)$ is $(6,6)$. Find the value of p and q.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 3A

6

Remember that the tangent to a circle at P is always perpendicular to the radius joining P to the centre of the circle.

Use this information to find the equation of the tangent to the circle $(x+2)^{2}+$ $(y-2)^{2}=73$ at the point $(1,-6)$, giving your answer in the form $a x+b y+c=$ 0 , where a, b and c are integers.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 3A

7

Prove, from first principles, that the derivative of $10 x^{2}$ is $20 x$.

$$
\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 3A

8
For the curve C with equation $y=x^{4}-8 x^{2}+3$,
(a) find $\frac{d y}{d x}$

The point A, on the curve C, has x-coordinate 1 .
(b) Find an equation for the normal to C at A, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 3A

9

$$
\frac{\left(x^{2}-3\right)^{2}}{x^{3}}, x \neq 0
$$

(a) Show that $\mathrm{f}(x) \equiv x-6 x^{-1}+9 x^{-3}$.
(b) Hence, or otherwise, differentiate $\mathrm{f}(x)$ with respect to x.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 3A

10

(a) Find the coordinates for which the tangent to the curve $y=x^{2}-9 x+4$ is perpendicular to the line $y-x-1=0$
(b) Find the possible values of c for which the line $24 x+3 y+c=0$ is tangent to the curve $f(x)=\frac{1}{3} x^{3}+\frac{9}{x}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 3A

(a)

Find the equation of the tangent to $f(x)=\frac{1}{4 x}$ at the point $x=2$
(b) At which points is the tangent to $f(x)=\frac{1}{4 x} \quad$ parallel to the line $x+4 y+12=0$.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 3A

(a) Find the equations of the tangent and normal to the curve $y=\frac{4}{x}$ at the point where $x=2$.
(b) Show that the tangent does not intersect the curve again.
(c) Show that the normal does intersect the curve again, and find the coordinates of the point of intersection.

BHASVIC MaTHS

A1 DOUBLES ASSIGNMENT 3A

The normals to the curve $2 y=3 x^{3}-7 x^{2}+4 x$ at the origin $(0,0)$ and the point $\mathrm{A}(1,0)$ meet at N . Show the coordinates of N are $\left(\frac{4}{5},-\frac{2}{5}\right)$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 3A

14
(a) Find the equation of the line l in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, which goes through the point $P(5,9)$ and has gradient 2 .
(b) The circle C has equation $x^{2}-8 x+y^{2}-4 y+15=0$. A line is a tangent to a circle if it touches it once only (rather than intersecting it twice or not touching it at all). Use this information to show that l is a tangent to C.
(c) Find, as a surd, the length from P to where l touches the circle.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 3A

1 - Answers

1.

(a) 6
(b) 18
(c) 108
(d) 3240
2.
(a) $6 x^{2}+4 x+3$
(b) $\frac{1}{5} x^{-\frac{4}{5}}$
(c) $-10 x^{-6}$
(d) $2 x+2 x^{-3}$
(e) $3 x^{2}-3$
(f) $x+\frac{1}{2} x^{-2}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 3A

2 - Answers

In the library computers you can plot the graphs on 'autograph'. On your phone you could use the free app 'desmos'. Or, use your graphical calculator to check. It is important you try these yourself first, don't go straight to the answers! And don't forget to label the intercepts \& asymptotes.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 3A
3 - Answers

$$
a=3, b=-24, c=45
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A
4 - Answers
(a) $\mathrm{k}=6, \mathrm{~m}=9$
(b) $\left(\frac{-7}{4}, \frac{-15}{2}\right)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A

5 - Answers

(a) $p=2$,
(b) $p=2, q=7$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A

6 - Answers

$$
3 x-8 y-51=0
$$

BHASVIC MatHS
A1 DOUBLES ASSIGNMENT 3A

7 - Answers

Proof -use

$$
\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A
8 - Answers
(a) $\frac{d y}{d x}=4 x^{3}-16 x$
(b) $x-12 y-49=0$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A

9 - Answers

(a)Show

$$
\text { (b) } f^{\prime}(x)=1+6 x^{-2}-27 x^{-4}
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 3A

10 - Answers

(a) $(4,-16)$
(b) $c=-52, c=52$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 3A
11-Answers
(a) $x+16 y-4=0$
(b) $(1,1 / 4)(-1,-1 / 4)$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 3A
12 - Answers

$$
\begin{array}{ll}
\text { (a) } x+y-4=0, x-y=0 & \text { (c) }(-2,-2)
\end{array}
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 3A
13-Answers

Show that

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 3A

14 - Answers
(a) $2 x-y-1=0$
(b) discriminant $=0$
(c) $3 \sqrt{5}$

