BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 21A

1

C and D are two events where $P(C \mid D)=\frac{1}{3}, P\left(C \mid D^{\prime}\right)=\frac{1}{5}$ and $P(D)=\frac{1}{4}$. Find:
(a) $\mathrm{P}(C \cap D)$
(b) $\mathrm{P}\left(C \cap D^{\prime}\right)$
(c) $\mathrm{P}(C)$
(d) $\mathrm{P}(D \mid C)$
(e) $\mathrm{P}\left(D^{\prime} \mid C\right)$
(f) $\mathrm{P}\left(D^{\prime} \mid C^{\prime}\right)$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

2

The diagram shows a sketch of the graph $y=\mathrm{f}(x)$.
The lines $x=2$ and $y=0$ (the x-axis) are asymptotes to the curve.
On separate axes, sketch the graphs of:
(a) $y=3 f(x)-1$
(b) $y=f(x+2)+4$
(c) $y=-f(2 x)$
(d) $y=f(|x|)$

For each new part, state the equations of the asymptotes and the new coordinates of the point A.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

3

The probability distribution of a discrete random variable X is given by:

$$
\mathrm{P}(X=r)=k\left(6 r^{2}-r^{3}\right) \quad \text { for } r=1,2,3,4,5
$$

$$
\mathrm{P}(X=r)=0 \quad \text { otherwise }
$$

(a) Show that $k=\frac{1}{105}$
(b) Show the probability distribution for X on a suitable diagram.
(c) Write down the value of the mode of the distribution.
(d) Find the value of $P(2 \leq X \leq 4)$

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 21A

4

Serving against her regular opponent, a tennis player has a 65% chance of getting her first serve in. If her first serve is in she then has a 70% chance of winning the point but if her first serve is not in, she only has a 45% chance of winning the point.
(a) Represent this information on a tree diagram.

For a point on which this player served to her regular opponent, find the probability that
(b) she won the point,
(c) her first serve went in given that she won the point,
(d) her first serve didn't go in given that she lost the point.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

5

Ten years ago the residents in a car congested area were asked whether they were in favour of a residents' parking scheme. The proportion of residents who supported the parking permit scheme was 30%. The scheme was never implemented due to a lack of funding.

The fund is now available and a new councillor believes that the support for the scheme is different now.

The replies of a questionnaire of twenty current residents are considered.
(a) State the hypothesis clearly
(b) Determine the critical region at the 5% significance level,
(c) State that actual significance level

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

5b

The diameters of eggs of the little-gull are approximately normally distributed with mean 4.11 cm and standard deviation 0.19 cm .
(a) Calculate the probability that an egg chosen at random has a diameter between 3.9 cm and 4.5 cm .

A sample of 8 little-gull eggs was collected from a particular island and their diameters, in cm , were:
$4.4, \quad 4.5, \quad 4.1, \quad 3.9, \quad 4.4, \quad 4.6, \quad 4.5, \quad 41$
(b) Assuming that the standard deviation of the diameters of eggs from the island is also 0.19 cm , test, at the 1% level, whether the results indicate that the mean diameter of little-gull eggs on this island is different from elsewhere.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

5c

A particular breakfast cereal as prizes in 56% of the boxes. A random sample of 100 boxes is taken.
(a) Find the exact value of the probability that exactly 55 boxes contain a prize.
(b) Find the percentage error when using a normal approximation to calculate the probability that exactly 55 boxes contain prizes.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

6

By writing each of these functions in the form given, state the greatest value of each function and the smallest positive value of x (in radians to 2 dp) at which this occurs.
(a) $8 \cos x-15 \sin x, R \cos (x+\alpha)$
(b) $5 \sin x+12 \cos x, R \sin (x+\alpha)$
(c) $3 \sin x-\cos x, R \sin (x-\alpha)$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 21A

7

Given that $\arctan (x-2)=-\frac{\pi}{3}$, find the value of x.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 21A

8

Expand these expressions in ascending powers of x as far as the term in x^{3}, and state the values of x for which the expansion is valid.
(a) $(1+x)^{\frac{3}{2}}$
(b) $(1-2 x)^{\frac{1}{2}}$
(c) $\left(1+\frac{x}{2}\right)^{-3}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 21A

9

Find the sum of the first n terms of the geometric series $5+15+45+\ldots$. . What is the smallest number of terms whose total is more than 10^{8} ?

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 21A

10

(a) Show that the equation $x^{3}-x-2=0$ has a root between 1 and 2
(b) Show that the equation can be rearranged to $x=\sqrt[3]{x+2}$
(c) Use the iterative formula $x_{n+1}=\sqrt[3]{x_{n}+2}$

And $x_{0}=1$ find the values of x_{1}, x_{2} and x_{3}

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 21A

11

$q(x)=\frac{9 x^{2}+26 x+20}{(1+x)(2+x)},|x|<1$
(a) Show that the expansion of $\mathrm{q}(X)$ in ascending powers of x can be approximated to $10-2 x+B x^{2}+C x^{3}$ where B and C are constants to be found.
(b) Find the percentage error made in using the series expansion in part (a) to estimate the value of $q(0.1)$. Give your answer to 2 significant figures.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 21A

12
Prove by contradiction that $\sqrt[3]{2}$ is irrational.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 21A

14

Complete this old spec paper https://www.madasmaths.com/archive/iygb practice papers/c3 practice pape rs/c3 r.pdf

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 21A

1

(a) 0.0833 (3 s.f.)
(b) 0.15
(c) 0.233 (3 s.f.)
(d) 0.357 (3 s.f.)
(e) 0.643 (3 s.f.)
(f) 0.783 (3 s.f.)

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 21A

2 - Answers

(a)

$A=(0,2), x=1, y=0$
(b)

$A=(-2,5), x=0, y=5$

BHASVIC MaTHS
A1 DOUBLES ASSIGNMENT 21A
3 - Answers

(b) | x | 1 | 2 | 3 | 4 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $P(X=x)$ | $\frac{1}{21}$ | $\frac{16}{105}$ | $\frac{9}{35}$ | $\frac{32}{105}$ | $\frac{5}{21}$ |

(c) 4
(d) $\frac{5}{7}$

BHASVIC MaTHS
A1 DOUBLES ASSIGNMENT 21A
4 - Answers
(a) 0.6125
(b) $\frac{26}{35}$
(c) $\frac{77}{155}$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 21A

5 - Answers

(a) $H_{0}: p=0.3, H_{1}: p \neq 0.3$,
(b) $x \leq 1$ and $x \geq 11$,
(c) 2.47%

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 21A

5b - Answers

(a) Accept $0.845 \sim 0.846$
(b) Test statistic $=3.0145 \ldots>2.5758$

Significant so reject H_{0}. There is evidence that the mean length of eggs from this island is different from elsewhere.

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 21A
5c - Answers
(a) 0.0786
(b) 0.26%

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 21A

6 - Answers

(a) $17,5.20$
(b) $13,0.395$
(c) $\sqrt{ } 10,1.89$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 21A
7 - Answers
$2-\sqrt{3}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 21A

8 - Answers

(a) $1+\frac{3}{2} x+\frac{3}{8} x^{2}-\frac{1}{16} x^{3},-1<x<1$
(b) $1-x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}, \quad-\frac{1}{2}<x<\frac{1}{2}$
(c) $1-\frac{3}{2} x+\frac{3}{2} x^{2}-\frac{5}{4} x^{3},-2<x<2$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 21A
9 - Answers
$\frac{5}{2}\left(3^{n}-1\right) ; 16$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 21A
10 - Answers
(a) 1.442
(b) 1.510
(c) 1.520

BHASVIC MaTHS
A1 DOUBLES ASSIGNMENT 21A

11 - Answers

(a) $10-2 x+\frac{5}{2} x^{2}-\frac{11}{4} x^{3}$, so $B=\frac{5}{2}$ and $C=-\frac{11}{4}$
(b) Percent error $=0.0027 \%$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 21A

12 - Answers

Assumption $\sqrt[3]{2}$ is rational and can be written in the form $\sqrt[3]{2}=\frac{a}{b}$ and there are no common factors between a and b.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 21A

14 - Answers

https://www.madasmaths.com/archive/iygb practice papers/c3 practice pape rs/c3 r solutions.pdf

