BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 2OA

1

For each of the following,
(i) Find the binomial expansion up to and including the x^{3} term.
(ii) State the range of values for x for which the expansion is valid
(a) $\sqrt{4+2 x}$
(b) $\frac{1}{2+x}$
(c) $\frac{1}{(4-x)^{2}}$
(d) $\sqrt{9+x}$
(e) $\frac{1}{\sqrt{2+x}}$
(f) $\frac{5}{3+2 x}$
(g) $\frac{1+x}{2+x}$
(h) $\sqrt{\frac{2+x}{1-x}}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 20A

2

$y=\mathrm{f}(x)$, where $\mathrm{f}(x)=x^{2} \sin x-2 x+1$. The points P, Q, and R are roots of the equation. The points A and B are stationary points, with x-coordinates a and b respectively.
(a) Show that the curve has a root in each of the following intervals:
(i) $[0.6,0.7]$
(ii) $[1.2,1.3]$
(iii) $[2.4,2.5]$
(b) Explain why $x_{0}=a$ is not suitable to use as a first approximation to α when applying the Newton-Raphson method to $\mathrm{f}(x)$.
(c) Using $x_{0}=2.4$ as a first approximation, apply the Newton-Raphson method to $\mathrm{f}(x)$ to obtain a second approximation. Give your answer to 3 decimal places.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 2OA

3

A small bus company provides a service for a small town and some neighbouring villages. IN a study of their service a random sample of 20 journeys was taken and the distances x, in kilometres, and journey times t, in minutes, were recorded. The average distance was 4.535 km and the average journey time was 15.15 minutes. Given that the PMCC is calculated to be 0.37 , stating your hypotheses clearly test, at the 5% level, whether or not there is evidence of a positive correlation between journey time and distance.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 2OA

4

The probability of a telesales representative making a sale on a customer is 0.1 .
(a) Find the probability that a telesales representative achieves
(i) No sales in 10 calls
(ii) More than 4 sales in 20 calls

Representatives are required to achieve a mean of at least 4 sales each day
(c) Find the least number of callas a representative should make each day, in order to achieve this requirement.
(d) Calculate the least number of calls that a representative meeds to make in a day for the probability of at least 1 sale, to exceed 0.98 .

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 20A

5

A herbalist claims that a particular remedy is successful in curing a particular disease in 52% of cases.
A random sample of 25 people who took the remedy is taken.
(a) Find the probability that more than 12 people in the sample were cured.

A second random sample of 300 people was taken and 170 were cured.
(b) Assuming the herbalist's claim is true, use a suitable approximation to find the probability that at least 170 were cured.
(c) Using your answer to part (b), comment on the herbalist's claim.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 2OA

6

Solve the following equations on the interval $0 \leq \theta \leq 2 \pi$. Give exact answers.

$$
\sec ^{2} x+\tan x-1=0
$$

(b) Prove that for $0 \leq x \leq 1, \arccos x=\arcsin \sqrt{1-x^{2}}$
(c) Give a reason why this result is not true for $-1 \leq x \leq 0$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 20A

7

Two variables S and x satisfy the formula $S=3 \times 7^{x}$
(a) Show that $\log S=\log 3+x \log 7$
(b) The straight line graph of $\log \mathrm{S}$ against x is plotted. Write down the gradient and the value of the intercept on the y axis.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 20A

8

Ed throws a ball for his dog. The vertical height of the ball is modelled by the Function

$$
\mathrm{h}(t)=40 \sin \left(\frac{t}{10}\right)-9 \cos \left(\frac{t}{10}\right)-0.5 t^{2}+9, t \geq 0
$$

$y=\mathrm{h}(t)$ is shown in the diagram.
(a) Show that the t-coordinate of A is the solution to

$$
t=\sqrt{18+80 \sin \left(\frac{t}{10}\right)-18 \cos \left(\frac{t}{10}\right)}
$$

To find an approximation for the t-coordinate of A, the iterative formula

$$
t_{n+1}=\sqrt{18+80 \sin \left(\frac{t n}{10}\right)-18 \cos \left(\frac{t n}{10}\right)} \text { is used }
$$

(b) Let $t_{0}=8$. Find the values of t_{1}, t_{2}, t_{3} and t_{4}. Give your answers to 3 decimal places.
(c) Find $h^{\prime}(t)$.
(d) Taking 8 as a first approximation, apply the Newton-Raphson method once to $\mathrm{h}(t)$ to obtain a second approximation for the time when the height of the ball is zero. Give your answer to 3 decimal places.
(e) Hence suggest an improvement to the range of validity of the model.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20A

9

Use proof by contradiction to prove the statement 'There are no integer solutions to the equation $x^{2}-y^{2}=2^{\prime}$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 20A

10

(a) Express $\frac{8 x+4}{(1-x)(2+x)}$ as partial fractions.
(b) Hence or otherwise expand $\frac{8 x+4}{(1-x)(2+x)}$ in ascending powers of x as far as the term in x^{2}.
(c) State the set of values of x for which the expansion is valid.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 20A

10b

(a) Express $-\frac{2 x}{(2+x)^{2}}$ as partial fractions.
(b) Hence prove that $-\frac{2 x}{(2+x)^{2}}$ can be expressed in the form $-\frac{1}{2} x+B x^{2}+C x^{3}$ where constants B and C are to be determined.
(c) State the set of values for x for which the expansion is valid.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20A

12

Complete this old spec paper https://www.madasmaths.com/archive/iygb practice papers/c3 practice pape rs/c3 q.pdf

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 20A

Answers 1

(a) (i) $2+\frac{x}{2}-\frac{x^{2}}{16}+\frac{x^{3}}{64}$
(ii) $|x|<2$
(b) (i) $\frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}$
(ii) $|x|<2$
(c) (i) $\frac{1}{16}+\frac{x}{32}-\frac{3 x^{2}}{256}+\frac{x^{3}}{256}$
(ii) $|x|<4$
(d) (i) $3+\frac{x}{6}-\frac{x^{2}}{216}+\frac{x^{3}}{3888}$
(ii) $|x|<9$
(e) (i) $\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{8} x+\frac{3 \sqrt{2}}{64} x^{2}-\frac{5 \sqrt{2}}{256} x^{3}$
(ii) $|x|<2$
(ii) $|x|<\frac{3}{2}$
(g) (i) $\frac{1}{2}+\frac{1}{4} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$
(ii) $|x|<2$
(h) (i) $\sqrt{2}+\frac{3 \sqrt{2}}{4} x+\frac{15 \sqrt{2}}{32} x^{2}+\frac{51 \sqrt{2}}{128} x^{3}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 20A

Answers 2

(a) $\mathrm{f}(0.6)=0.0032 \ldots>0, \mathrm{f}(0.7)=0.0843 \ldots<0$

Sign change implies root in the interval.
$\mathrm{f}(1.2)=-0.0578 \ldots<0, \mathrm{f}(1.3)=0.0284 \ldots>0$
Sign change implies root in the interval.
$\mathrm{f}(2.4)=0.0906 \ldots>0, \mathrm{f}(2.5)=-0.2595 \ldots<0$
Sign change implies root in the interval.
(b) It's a turning point, so $\mathrm{f}^{\prime}(x)=0$, and you cannot divide by zero in the Newton-Raphson formula.
(c) 2.430

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20A

3 - Answers
No evidence of correlation

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 20A
4 - Answers
(a) 0.3487, 0.0432,
(b) $n=40$,
(c) $n=38$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 20A

5 - Answers

(a) 0.581
(b) 0.0594
(c) Assuming the claim is correct, there is a less than 6% chance that 170 or more people would be cured out of 300 , so it is likely that the herbalist has understated the actual cure rate.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20A

6 - Answers

$$
0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}, 2 \pi
$$

b) Let $y=\arccos x \cdot x \in[0,1] \Rightarrow y \in\left[0, \frac{\pi}{2}\right]$
$\cos y=x$, so $\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$
(Note, $\sin y \neq-\sqrt{1-x^{2}}$ since $y \in\left[0, \frac{\pi}{2}\right]$, so $\sin y \geq 0$)
$y=\arcsin \sqrt{1-x^{2}}$
Therefore, $\arccos x=\arcsin \sqrt{1-x^{2}}$ for $x \in[0,1]$.
(c) For $x \in(-1,0), \arccos x \in\left(\frac{\pi}{2}, \pi\right)$, but \arcsin only has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 20A

7 - Answers

(a) use \log rules
(b) Gradient $\log 7$, intercept $\log 3$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 2OA

8 - Answers

(a) $h(t)=0$
$40 \sin \left(\frac{t}{10}\right)-9 \cos \left(\frac{t}{10}\right)-0.5 t^{2}+9=0$
$40 \sin \left(\frac{t}{10}\right)-9 \cos \left(\frac{t}{10}\right)+9=0.5 t^{2}$
$80 \sin \left(\frac{t}{10}\right)-18 \cos \left(\frac{t}{10}\right)+18=t^{2}$
$\Rightarrow t=\sqrt{18+80 \sin \left(\frac{t}{10}\right)-18 \cos \left(\frac{t}{10}\right)}$
(b) $t_{1}=7.928, t_{2}=7.896, t_{3}=7.882, t_{4}=7.876$
(c) $h^{\prime}(t)=4 \cos \left(\frac{t}{10}\right)+0.9 \sin \left(\frac{t}{10}\right)-t$
(d) 7.874 (3 d.p.)
(e) Restrict the range of validity to $0 \leq t \leq A$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 2OA

9 - Answers

Assumption: there is an integer solution to the equation $x^{2}-y^{2}=2$.
Remember that $x^{2}-y^{2}=(x-y)(x+y)=2$
To make a product of 2 using integers, the possible pairs are $(2,1),(1,2),(-2,1)$, (-1, -2).
Consider each possibility in turn.
$x-y=2$ and $x+y=1 \Rightarrow x=\frac{3}{2}, y=-\frac{1}{2}$
$x-y=1$ and $x+y=2 \Rightarrow x=\frac{3}{2}, y=\frac{1}{2}$
$x-y=-2$ and $x+y=-1 \Rightarrow x=-\frac{3}{2}, y=\frac{1}{2}$
$x-y=-1$ and $x+y=-2 \Rightarrow x=-\frac{3}{2}, y=-\frac{1}{2}$
This contradicts the statement that there is an integer solution to the equation $x^{2}-y^{2}=2$.
Therefore the original statement must be true: There are no integer solutions to the equation $x^{2}-y^{2}=2$.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 2OA

10 - Answers

(a) $\frac{4}{1-x}-\frac{4}{2+x}$
(b) $2+5 x+\frac{7}{2} x^{2}$
(c) valid $|x|<1$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 2OA
10b - Answers
(a) $-\frac{2}{2+x}+\frac{4}{(2+x)^{2}}$
(b) $B=\frac{1}{2}, C=-\frac{3}{8}$
(c) $|x|<2$

A1 DOUBLES ASSIGNMENT 20A

11-Answers
(a) $-\frac{2}{2+x}+\frac{4}{(2+x)^{2}}$
(b) $B=\frac{1}{2}, C=-\frac{3}{8}$
(c) $|x|<2$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 20A

12 - Answers

(a) https://www.madasmaths.com/archive/ivgb practice papers/c1 practice p apers/c1 v solutions.pdf

BHASVIC Ma＇THS
 A1 DOUBLES ASSIGNMENT 20A

12 －Answers

（a）https：／／www．madasmaths．com／archive／iygb practice papers／c3 practice p apers／c3 q solutions．pdf

