BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 18A

1

(a) $\int \sec ^{2} y \tan ^{5} y d y$
(b) $\int \operatorname{cosec} 3 u c o t 3 u d u$
(c) $\int 4 x\left(3 x^{2}+1\right)^{6} d x$
(d) $\int \frac{\sec ^{2} 3 x}{2+\tan 3 x} d x$
(e) $\int \frac{4-x}{(x-2)(x-3)} d x$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 18A

2

The diagram shows the curve C with parametric equations

$$
x=a \sin ^{2} t, \quad y=a \cos t, \quad 0 \leq t \leq \frac{1}{2}
$$

where a is a positive constant. The point P lies on C and has coordinates $\left(\frac{3}{4} a, \frac{1}{2} a\right)$.
(a) Find $\frac{d y}{d x}$, giving your answer in terms of t.

Find an equation of the tangent to C at P.
(b) The tangent to C at P cuts the coordinate axes at points A and B.
(c) Show that the triangle $A O B$ has area $k a^{2}$ where k is a constant to be found.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

3

The circle C has a centre at $(6,9)$ and a radius of $\sqrt{50}$.

The line l_{1} with equation $x+y-21=0$ intersects the circle at the points P and Q.
(a) Find the coordinates of the point P and the point Q.

(b) Find the equations of l_{2} and l_{3}, the tangents at the points P and Q respectively.
(c) Find the equation of l_{4}, the perpendicular bisector of the chord $P Q$.
(d) Show that the two tangents and the perpendicular bisector intersect and find the coordinates of R, the point of intersection.
(e) Calculate the area of the kite $A P R Q$.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 18A

4

The curve C with equation $y=\mathrm{f}(x)$ is shown in the diagram, where

$$
\mathrm{f}(x)=\frac{\cos 2 x}{e^{x}}, 0 \leq x \leq \pi
$$

The curve has a local minimum at A and a local maximum at B.
(a) Show that the x-coordinates of A and B satisfy the equation $\tan 2 x=-0.5$ and hence find the coordinates of A and B.
(b) Using your answer to part (a), find the coordinates of the maximum and minimum turning points on the curve with equation $y=2+4 f(x-4)$
(c) Determine the range of values for which $\mathrm{f}(x)$ is concave.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

5

Express the following in the form $R \sin (\theta \pm \alpha)$ or $R \cos (\theta \pm \alpha)$ as appropriate (with α in radians) and hence find the minimum value of the function, and the first positive value of θ for which it occurs: check using your graphic calculator
(a) $\cos \theta+\sin \theta \quad$ [use $R \cos (\theta-\alpha)]$
(b) $\quad 5 \cos \theta-12 \sin \theta \quad[$ use $R \cos (\theta+\alpha)]$
(c) $\sqrt{3} \sin \theta+3 \cos \theta \quad[$ use $R \sin (\theta+\alpha)]$
(d) $3 \sin \theta-7 \cos \theta \quad[$ use $R \sin (\theta-\alpha)]$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

6

(a) Express $65 \cos \theta-20 \sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<$ $\alpha<\frac{\pi}{2}$. Give the value of α correct to 4 decimal places.

A city wants to build a large circular wheel as a tourist attraction. The height of a tourist on the circular wheel is modelled by the equation

$$
H=70-65 \cos 0.2 t+20 \sin 0.2 t
$$

where H is the height of the tourist above the ground in metres, t is the number of minutes after boarding and the angles are given in radians. Find:
(b) The maximum height of the wheel
(c) The time for one complete revolution
(d) The number of minutes the tourist will be over 100 m above the ground in each revolution.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 18A

7

Given that
$y=\arccos x, \quad-1 \leq x \leq 1$ and $0 \leq y \leq \pi$
(a) express $\arcsin x$ in terms of y

Hint: Use $\cos \theta=\sin \left(\frac{\pi}{2}-\theta\right)$
(b) Hence evaluate $\arccos x+\arcsin x$. Give your answer in terms of π.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 18A

8

The side of a cube of length x cm , is increasing at the constant rate of $1.5 \mathrm{~cm} \mathrm{~s}^{-1}$

Find the rate at which the volume of the cube is increasing when its side is 6 cm

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

9

A curve has implicit equation $x^{3}+y^{3}+3 y^{2}+3 y-6 x=50+2 x y$ Find an equation of the normal to the curve at the point $\mathrm{P}(4,2)$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 18A

10

Figure 3 shows the curve C with parametric equations
$x=8 \cos t, \quad y=4 \sin 2 t, \quad 0 \leq t \leq \frac{\pi}{2}$
The point P lies on C and has coordinates $(4,2 \sqrt{ } 3)$.
(a) Find the value of t at the point P.

The line l is a normal to C at P.
(b) Show that an equation for l is $y=-x \sqrt{ } 3+6 \sqrt{ } 3$.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

11

$$
\mathrm{f}(x)=\frac{9 x^{2}+4}{9 x^{2}-4}, x \neq \pm \frac{2}{3}
$$

(a) Given that $\mathrm{f}(x)=A+\frac{B}{3 x-2}+\frac{C}{3 x+2}$, find the values of the constants A, B and C.
(b) Hence find the exact value of $\int_{-\frac{1}{3}}^{\frac{1}{3}} \frac{9 x^{2}+4}{9 x^{2}-4} d x$, writing your answer in the form $a+b \ln c$, where $a . b$ and c are rational numbers to be found.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 18A

12
(a) Show that $\sin ^{2} \mathrm{x}+3 \cos ^{2} \mathrm{x} \equiv 2+\cos 2 \mathrm{x}$.
(b) Hence evaluate $\int_{\pi / 12}^{\pi / 4}\left(\sin ^{2} x+3 \cos ^{2} x\right) d x$
check using your calculator to see if you're right
(c) Show that $\frac{4 \cos 2 x}{\sin ^{2} 2 x} \equiv \operatorname{cosec}^{2} x-\sec ^{2} x$
(d) Hence evaluate $\int_{\pi / 6}^{\pi / 3} \frac{4 \cos 2 x}{\sin ^{2} 2 x} d x$
check using your calculator to see if you're right

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 18A

13

Find the first three terms in the expansion of

$$
\frac{1}{(1+x)^{2}}
$$

Hence deduce the expansions, stating the values of x for which each expansion is valid.
a) $\frac{1}{(1-3 x)^{2}}$
b) $\frac{1}{\left(1+\frac{2 x}{3}\right)^{2}}$
c) $\frac{1}{(4-3 x)^{2}}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 18A

14

$$
\frac{2 x^{2}+5 x-10}{(x-1)(x+2)} \equiv A+\frac{B}{x-1}+\frac{C}{x+2}
$$

(a) Find the values of A, B and C.
(b) Hence, or otherwise, expand $\frac{2 x^{2}+5 x-10}{(x-1)(x+2)}$ in ascending powers of x, as far as the term in x^{2}. Give each coefficient as a simplified fraction.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 18A

15
(a) Complete this old spec paper
(b) https://www.madasmaths.com/archive/iygb practice papers/c3 practice pa pers/c3 o.pdf

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 18A

1 - Answers

(a) $\frac{1}{6} \tan ^{6} y+c$
(b) $-\frac{1}{3} \operatorname{cosec} 3 u+c$
(c) $\frac{2}{21}\left(3 x^{2}+1\right)^{7}+c$
(d) $\frac{1}{3} \ln (2+\tan 3 x)+c$
(e) $\ln |x-3|-2 \ln |x-2|+c$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

2 - Answers

(a) $-\frac{1}{2} \sec t$
(b) $4 y+4 x=5 a$
(c) Tangent crosses the x-axis at $x=\frac{5}{4} a$, and crosses the y-axis at $y=\frac{5}{4} a$. So area $A O B=\frac{1}{2}\left(\frac{4}{5} a\right)^{2}=\frac{25}{32} a^{2}, k=\frac{25}{32}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

3 - Answers

(a) $P(5,16)$ and $Q(13,8)$
(b) $l_{2}: y=\frac{1}{7} x+\frac{107}{7}$ and $l_{3}: y=7 x-83$
(c) $l_{4}: y=x+3$
(d) All 3 equations have solution $x=\frac{43}{3}, y=\frac{52}{3}$ so $R(15,18)$
(e) $\frac{200}{3}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

4 - Answers

(a) $\mathrm{f}^{\prime}(x)=-\frac{2 \sin 2 x+\cos 2 x}{e^{x}}$
$\mathrm{f}^{\prime}(x)=0 \Leftrightarrow 2 \sin 2 x+\cos 2 x=0 \Leftrightarrow \tan 2 x=-0.5$
$A(1.34,-0.234), B(2.91,0.0487)$
(b) Maximum $(6.91,2.20)$; minimum $(5.34,1.06)$ to 3 s.f.
(c) $0<x \leq 0.322,1.89 \leq x<\pi$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 18A

5 - Answers

(a) $R=\sqrt{2}, \alpha=\frac{\pi}{4} \mathrm{~min}$

$$
-\sqrt{2}, \theta=\frac{5 \pi}{4}
$$

(b) $R=13, \alpha=1.18 \mathrm{~min}$

$$
-13, \theta=1.96
$$

(c) $R=2 \sqrt{3}, \alpha=\frac{\pi}{3} \mathrm{~min}$

$$
-2 \sqrt{3}, \theta=\frac{7 \pi}{6}
$$

(d) $R=\sqrt{58}, \alpha=\arctan \frac{7}{3} \min$
$-\sqrt{58}, \theta=5.88$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

6 - Answers

(a) $\mathrm{R}=68.0074, \alpha=0.2985$
(b) 138.0 m
(c) 31.4 minutes
(d) 11.1 minutes

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

7 - Answers

(a) $\frac{\pi}{2}-y$
(b) $\frac{\pi}{2}$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

8 - Answers
(a) $162 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 18A

9 - Answers
$y=\frac{1}{2} x$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 18A

10 - Answers
(a) $t=\frac{\pi}{3}$
(b) proof

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 18A
11-Answers
(a) $A=1, B=2, C=-2$
(b) $a=\frac{2}{3}, b=-\frac{4}{3}, c=3$

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 18A
12 - Answers
(b) $\frac{\pi}{3}+\frac{1}{4}$
(d) 0

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 18A
13-Answers
a) $1+6 x+27 x^{2},|x|<\frac{1}{3}$
b) $1-\frac{4}{3} x+\frac{4}{3} x^{2},|x|<\frac{3}{2}$
c) $\frac{1}{2}+\frac{3 x}{4}+\frac{27 x^{2}}{16},|x|<\frac{4}{3}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 18A
14 - Answers

$$
\begin{aligned}
& A=2, B=-1, C=4 \\
& 5+\frac{3}{2} x^{2}+\cdots
\end{aligned}
$$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 18A

15 - Answers

https://www.madasmaths.c om/archive/iygb practice p apers/c3 practice papers/c 3 o solutions.pdf

