BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17B

1

Data was collected about height above sea level, x metres, and the temperature, $y^{0} C$, at 7.00 am., on the same day in summer at nine places in Europe.

The PMCC was calculated to be -0.975 .

Test this for negative correlation at the 5\% significance level . Interpret your result in context.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

2

Find any point(s) of inflection of the following functions.
(a) $\mathrm{f}(x)=\cos ^{2} x-2 \sin x, 0<x<2 \pi$
(b) $\mathrm{f}(x)=-\frac{x^{3}-2 x^{2}+x-1}{x-2}, x \neq 2$
(c) $\mathrm{f}(x)=-\frac{x^{3}}{x^{2}-4}, x \neq \pm 2$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

3

a Write down two conditions under which the normal distribution may be used as an approximation to the binomial distribution.
A company sells orchids of which 45% produce pink flowers.
A random sample of 20 orchids is taken and X produce pink flowers.
b Find $\mathrm{P}(X=10)$.
A second random sample of 240 orchids is taken.
c Using a suitable approximation, find the probability that fewer than 110 orchids produce pink flowers.
d The probability that at least q orchids produce pink flowers is 0.2 . Find q.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 17B

4
A train engine of mass 6400 kg is pulling a carriage of mass 1600 kg along a straight horizontal railway track. The engine is connected to the carriage by a shunt which is parallel to the direction of motion of the coupling. The shunt is modelled as a light rod.

The engine provides a constant driving force of 12000N. The resistances to the motion of the engine and the carriage are modelled as constant forces of magnitude R N and 2000 N respectively.
Given that the acceleration of the engine and the carriage is $0.5 \mathrm{~ms}^{-2}$.
(a) find the value of R
(b) show that the tension in the shunt is 2800 N

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 17B

5

(a) A particle is projected upwards with a speed of $14 \mathrm{~m} \mathrm{~s}^{-1}$. Find for how long it is above 2 m .
(b) A ball is thrown vertically upwards from a height 1.6 m above the ground, with a speed of $7 \mathrm{~m} \mathrm{~s}^{-1}$. Find the speed when it hits the ground.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

6

A sledge has mass 30 kg . The sledge is pulled in a straight line along horizontal ground by means of a rope. The rope makes an angle 20° with the horizontal, as shown in Figure 3. The coefficient of friction between the sledge and the ground is 0.2 . The sledge is modelled as a particle and the rope as a light inextensible string. The tension in the rope is 150 N . Find, to 3 significant figures,
(a) the normal reaction of the ground on the sledge,
(b) the acceleration of the sledge

When the sledge is moving at $12 \mathrm{~m} \mathrm{~s}^{-1}$, the rope is released from the sledge.
(c) Find, to 3 significant figures, the distance travelled by the sledge from the moment when the rope is released to the moment when the sledge comes to rest.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

7

The random variable X is normally distributed with mean μ and variance σ^{2}.
a Write down the distribution of the sample mean \bar{X} of a random sample of size n. (1 mark)
A construction company wishes to determine the mean time taken to drill a fixed number of holes in a metal sheet.
b Determine how large a random sample is needed so that the expert can be 95% certain that the sample mean time will differ from the true mean time by less than 15 seconds. Assume that it is known from previous studies that $\sigma=40$ seconds.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

8

Two helicopters P and Q are moving in the same horizontal plane. They are modelled as particles moving in straight lines with constant speeds. At noon P is at the point with position vector $(20 \mathbf{i}+35 \mathbf{j}) \mathrm{km}$ with respect to a fixed origin O. At time t hours after noon the position vector of P is $\mathbf{p} \mathrm{km}$. When $t=\frac{1}{2}$ the position vector of P is $(50 \mathbf{i}-25 \mathbf{j}) \mathrm{km}$. Find
(a) the velocity of P in the form $(a \mathbf{i}+b \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$,
(b) an expression for \mathbf{p} in terms of t.

At noon Q is at O and at time t hours after noon the position vector of Q is $\mathbf{q} \mathrm{km}$. The velocity of Q has magnitude $120 \mathrm{~km} \mathrm{~h}^{-1}$ in the direction of $4 \mathbf{i}-3 \mathbf{j}$. Find
(c) an expression for \mathbf{q} in terms of t,
(d) the distance, to the nearest km, between P and Q when $t=2$.

BHASVIC M α 'IHS A1 DOUBLES ASSIGNMENT 17B

9

Now, Integrate the following functions using an appropriate method when required:
(a) $\int-\sin (3 x+1) d x$
(b) $\int 4 \cos \left(\frac{x}{2}\right) d x$
(c) $\int \tan x d x$
(d) $\int \cot 4 x d x$
(e) $\int \sec ^{5} 2 x \tan 2 x d x$
(f) $\int \tan 5 x d x$
(g) $\int \sin ^{2} 6 x d x$
(h) $\int 3 \cos ^{2} 2 x d x$
(i) $\int 3 \tan ^{2} 4 x d x$

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 17B

10

A curve C has equation $y=\frac{1}{2} e^{2 x}-4 x+1, \quad x \in R$
The point P lies on C where $\mathrm{x}=\ln 4$.
(a) Show that the equation of the tangent to the curve is $y=12 x+9-32 \ln 2$

The point Q lies on C where $\mathrm{x}=\ln 2$.
The normal to the curve at the point Q meets the tangent to the curve at the point P , at the point R .
(b) Show that the co-ordinates of R are $(\ln 2,9-20 \ln 2)$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

11

A particle P of mass 0.5 kg moves under the action of a single force \mathbf{F} Newtons. At time t seconds, the velocity $\mathrm{v} \mathrm{m} \mathrm{s}^{-1}$ of P is given by;

$$
\mathbf{v}=3 t^{2} \mathbf{i}+(1-4 t) \mathbf{j} .
$$

Find:
(a) the acceleration of P at time t seconds,
(b) the magnitude of \mathbf{F} when $t=2$.

BHASVIC M ${ }^{\prime}$ ITHS A1 DOUBLES ASSIGNMENT 17B

A circle has parametric equations $x=4 \sin t-3, \quad y=4 \cos t+5$.
(a) Find the Cartesian equation of the circle
(b) Draw a sketch of the circle
(c) Find the exact coordinates of the points of intersection of the circle with the y axis

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17B

(a) Show that $\cos ^{4} x \equiv \frac{1}{8} \cos 4 x+\frac{1}{2} \cos 2 x+\frac{3}{8}$
(b) Hence find $\int \cos ^{4} x \mathrm{~d} x$

BHASVIC M α 'IHS A1 DOUBLES ASSIGNMENT 17B

14

> A ladder $A B$, of mass m and length $3 a$, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass $2 m$ is fixed on the ladder at the point C, where $A C=a$. The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle. The ladder rests in limiting equilibrium at an angle of 60° with the ground.

> Find the coefficient of friction between the ladder and the ground.

For the above problem, draw a complete and clear force diagram, including $F_{\max }$ and R at A, perpendicular reaction S at B, the weight of the ladder, and the weight of the load at C.
Friction is limiting so you can use $F_{\max }=\mu R$
You can take moments about any point you like. Point A is easy then the equation will not have $F_{\max }$ or R. However, you can take moments about a point not even on the ladder - if you choose the point where R and S intersect, these forces will not then be in the equation, and you can find $F_{\max }$ directly. Construct three equations, then solve to find the coefficient of friction.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

15

A test statistic has distribution $B(30, p)$. Given that:

$$
H_{0}: p=0.4, H_{1}: p<0.4
$$

(a) Find the critical region for the test statistic at the 5% significance level

A test statistic has distribution $B(40, p)$. Given that:

$$
H_{0}: p=0.2, \quad H_{1} \quad: p \neq 0.2
$$

(b) Find the critical region for the test statistics at the 5\% significance level

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17B

16
Complete this old spec paper
https://www.madasmaths.com/archive/iygb practice papers/c2 practice paper s/c2 r.pdf

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

1 - Answers

Reject H_{0}. The greater the altitude the lower the temperature.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 17B
2 - Answers
(a) $\left(\frac{\pi}{6},-\frac{1}{4}\right),\left(\frac{5 \pi}{6},-\frac{1}{4}\right)$
(b) $(1,-1)$
(c) $(0,0)$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

$$
3 \text { - Answers }
$$

a n large, p close to 0.5 . b 0.1593
c 0.5772 d 115

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

4 - Answers
(a) 6000 N
(b) Proof

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 17B

5 - Answers

(a) 2.56 seconds
(b) $9.0 \mathrm{~ms}^{-1}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17B

6 - Answers

(a) 243 N
(b) $3.08 \mathrm{~ms}^{-2}$
(c) 36.7 m

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17B

7 - Answers

$$
\text { a } X \sim N\left(\mu_{1} \frac{a^{2}}{n}\right) \text { b Need } n=28 \text { or more }
$$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

8 - Answers
(a) $60 \mathbf{i}-120 \mathbf{j}$
(b) $\mathbf{p}=20 \mathbf{i}+35 \mathbf{j}+(60 \mathbf{i}-120 \mathbf{j}) \mathrm{t}$
(c) $\mathbf{q}=96 \mathbf{t i}-72 t \mathbf{j}$
(d) 80 km

BHASVIC M M THS
 A1 DOUBLES ASSIGNMENT 17B

9 - Answers

(a) $\frac{1}{3} \cos (3 x+1)+c$
(b) $8 \sin \left(\frac{x}{2}\right)+c$
(c) $-\ln (\cos x)+c$
(d) $\frac{1}{4} \ln (\sin 4 x)+c$
(e) $\frac{1}{10} \sec ^{5} 2 x+c$
(f) $-\frac{1}{5} \ln (\cos 5 x)+c$
(g) $\frac{1}{2} x-\frac{1}{24} \sin 12 x+c$
(h) $\frac{3}{2} x+\frac{3}{8} \sin 4 x+c$
(i) $\frac{3}{4} \tan 4 x-3 x+c$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17B

10 - Answers

Proof

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 17B
11-Answers
$\begin{array}{ll}\text { (a) } 6 \mathrm{ti}-4 \mathrm{j} & \text { (b) } 6.32 \mathrm{~N}\end{array}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 17B
12 - Answers
(a) $(x+3)^{2}+(y-5)^{2}=16$
(b) check desmos
(c) $(0,5+\sqrt{7}),(0,5-\sqrt{7})$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17B

13 - Answers

(a) $\cos ^{4} x=\left(\cos ^{2} x\right)^{2}=\left(\frac{1+\cos 2 x}{2}\right)^{2}=\frac{1}{4}+\frac{1}{2} \cos 2 x$

$$
\begin{aligned}
& +\frac{1}{4} \cos ^{2} 2 x=\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{4}\left(\frac{1+\cos 4 x}{2}\right) \\
& =\frac{3}{8}+\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x
\end{aligned}
$$

(b) $\frac{1}{32} \sin 4 x+\frac{1}{4} \sin 2 x+\frac{3}{8} x+c$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17B
14 - Answers

$$
\mu=0.22
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 17B
15-Answers
(a) $x \leq 7$
(b) $x \leq 2$ and $x \geq 14$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17B
16 - Answers
https://www.madasmaths.com/archive/iygb practice papers/c2 practice papers/c2 r solutions.pdf

