BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17A

1

(a) Show that $\cos \theta-\sqrt{3} \sin \theta$ can be written in the form $R \cos (\theta+\alpha)$, with R >0 and $0<\alpha<\frac{\pi}{2}$.
(b) Hence sketch the graph of $y=\cos \theta-\sqrt{3} \sin \theta, 0<\alpha<2 \pi$, giving the coordinates of points of intersection with the axes.
(c) Express $7 \cos \theta-24 \sin \theta$ in the form $R \cos (\theta+\alpha)$, with $R>0$ and $0<$ $\alpha<90^{\circ}$.
(d) The graph of $y=7 \cos \theta-24 \sin \theta$ meets the y-axis at P. State the coordinates of P.
(e) Write down the maximum and minimum values of $7 \cos \theta-24 \sin \theta$.
(f) Deduce the number of solutions, in the interval $0<\theta<360^{\circ}$, of the following equations:
(i) $7 \cos \theta-24 \sin \theta=15$
(ii) $7 \cos \theta-24 \sin \theta=26$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17A

2

Solve the following equations, in the intervals given in brackets.
(a) $6 \sin x+8 \cos x=5 \sqrt{3},\left[0,360^{\circ}\right]$
(b) $2 \cos 3 \theta-3 \sin 3 \theta=-1,\left[0,90^{\circ}\right]$
(c) $8 \cos \theta+15 \sin \theta=10,\left[0,360^{\circ}\right]$
(d) $5 \sin \frac{x}{2}-12 \cos \frac{x}{2}=6.5,\left[-360^{\circ}, 360^{\circ}\right]$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17A

3

The figure above shows the graph of the curve with equation $y=f(x)$.
The curve crosses at the points $(-4,0),(2,0)$ and $(4,0)$ and the y axis at the points $(0,16)$
Determine the equation of $f(x)$ in the form

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

Where a, b, c and d are constants.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17A

4

A curve C has parametric equations

$$
x=6 \cos 2 t, \quad y=2 \sin t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \operatorname{cosec} t$, giving the exact value of the constant λ.
(b) Find an equation of the normal to C at the point where $t=\frac{\pi}{3}$

Give your answer in the form $y=m x+c$, where m and c are simplified surds.

The cartesian equation for the curve C can be written in the form

$$
x=f(y), \quad-k<y<k
$$

where $f(y)$ is a polynomial in y and k is a constant.
(c) Find $f(y)$
(d) State the value of k.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17A

5

The curve C has equation

$$
2 \cos 3 x \sin y=1,0 \leq x, y \leq \pi
$$

a) Show that

$$
\frac{d y}{d x}=3 \tan 3 x \tan y .
$$

The point $P\left(\frac{\pi}{12}, \frac{\pi}{4}\right)$ lies on C.
b) Show that an equation of the tangent to C at P is

$$
y=3 x .
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17A

6

Daily mean windspeed is modelled as being normally distributed with a standard deviation of 3.1 knots.

A random sample of 25 recorded daily mean windspeeds is taken at Heathrow in 2015.

Given that the mean of the sample is 12.2 knots, test at the 2.5% level of significance whether the mean of the daily mean windspeeds is greater than 9.5 knots.

State your hypotheses clearly.

BHASVIC M α 'IHS A1 DOUBLES ASSIGNMENT 17A

7

(a) Express $1.4 \sin \theta-5.6 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<90^{\circ}$. Round R and α to 3 decimal places.
(b) Hence find the maximum value of $1.4 \sin \theta-5.6 \cos \theta$ and the smallest positive value of θ for which this maximum occurs.

The length of daylight $d(t)$ at a location in northern Scotland can be modelled using the equation $d(t)=12-5.6 \cos \left(\frac{360 t}{365}\right)+1.4 \sin \left(\frac{360 t}{365}\right)$

Where t is the numbers of days into the year:
(c) Calculate the minimum number of daylight hours in northern Scotland as given by this model.
(d) Find the value of t when this minimum number of daylight hours occurs.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 17A

8

Express the following in the form given, where α is in radians and $0<\alpha<\frac{\pi}{2}$. Give your answer to 3 significant figures.
(a) $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$
(b) $2 \cos x-\sin x$ in the form $R \cos (x+\alpha)$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 17A

9

By splitting this integral into partial fractions first, and using your reverse chain rule methods, evaluate:
$\int_{0}^{2} \frac{25 x+1}{(2 x-1)(x+1)^{2}} d x \quad *$ hint - remember that $\ln f(x)$ differentiates to $\frac{f^{\prime}(x)}{f(x)} *$

Solve the equations
(a) $\log _{2} x+4 \log _{x} 2=5$
(b) $\log _{3}(2-3 x)=\log _{9}\left(6 x^{2}-19 x+2\right)$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17A

11

The term independent of x in the expansion of $\left(x^{3}+\frac{a}{x^{2}}\right)^{5}$ is -80
Find the value of the constant a

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17A

12

Sketch the following modulus graphs, writing down the co-ordinates of any points at which the graph meets the coordinate axes.
(a) $y=|2 x+3|$
(b) b) $y=\left|2 x^{2}+5 x-12\right|$
(c) $\mathrm{y}=\left|2^{x}-2\right|$
(d) $y=|\sin 2 x|$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17A

13

An oil spillage on the surface of the sea remains circular at all times.
The radius of the spillage, $r \mathrm{~km}$, is increasing at the constant rate of $0.5 \mathrm{kmh}^{-1}$
(a) Find the rate at which the area of the spillage, $A \mathrm{~km}^{2}$, is increasing when the circle's radius has reached 10 km

A different oil spillage on the surface of the sea also remains circular at all times.

The area of this spillage, $A \mathrm{~km}^{2}$, is increasing at the rate $0.5 \mathrm{~km}^{2} \mathrm{~h}^{-1}$.
(b) Show that when the area of the spillage has reached $10 \mathrm{~km}^{2}$, the rate at which the radius, r, of the spillage is increasing is

$$
\frac{1}{4 \sqrt{10 \pi}} k m h^{-1}
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A

14

The function t is defined by $\quad \mathrm{t}: x \mapsto 5-2 x$

Solve the equation $\quad \mathrm{t}^{2}(x)-(\mathrm{t}(x))^{2}=0$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17A

14

Complete this old spec paper
https://www.madasmaths.com/archive/iygb practice papers/c3 practice p apers/c3 n.pdf

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 17A

1 - Answers

(a) $\cos \theta-\sqrt{3} \sin \theta \equiv R \cos (\theta+\alpha)$ gives $R=2, \alpha=\frac{\pi}{3}$
(b) $y=2 \cos \left(\theta+\frac{\pi}{3}\right)$

(c) $25 \cos \left(\theta+73.7^{\circ}\right)$
(d) $(0,7)$
(e) $25,-25$
(f) (i) $2 \quad$ (ii) 0

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A

2 - Answers

(a) $6.9^{\circ}, 66.9^{\circ}$
(b) $16.6^{\circ}, 65.9^{\circ}$
(c) $8.0^{\circ}, 115.9^{\circ}$
(d) $-165.2^{\circ}, 74.8^{\circ}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A
3 - Answers

$$
y=-\frac{1}{2} x^{3}-x^{2}-8 x+16
$$

BHASVIC MaTHS
A1 DOUBLES ASSIGNMENT 17A

4 - Answers

ANS:
a) $\lambda=-\frac{1}{12}$
b) $y=6 \sqrt{3} x+19 \sqrt{3}$
c) $f(y)=6-3 y^{2}$
d) $k=2$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A
5 - Answers
PROOF

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 17A

6 - Answers

$H_{0}: \mu=9.5, H_{1}: \mu>9.5$. Critical region is $\bar{X} \geq 10.715 . \bar{x}=12.2>10.715$, so reject H_{0} and conclude that the mean daily windspeed is greater than 9.5 knots.

BHASVIC M α ITHS
A1 DOUBLES ASSIGNMENT 17A

7 - Answers

(a) $R=5.772, \alpha=75.964^{\circ}$
(b) 5.772 when $\theta=166.0^{\circ}$
(c) 6.228 hours
(d) 350.8 days

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 17A

8 - Answers

Check solutions by choosing a random value for θ (e.g. $\theta=0.7 \mathrm{rad}$) and substituting this back into the two different forms

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 17A

9 - Answers

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 17A

10 - Answers

(a) 2,16
(b) $-\frac{1}{3},-2$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A
11-Answers

$$
a=-2
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A
12 - Answers

Use desmos to check.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 17A

13 - Answers

(a) $10 \pi \mathrm{~km}^{2} h^{-1} \quad\left(31.4 \mathrm{~km}^{2} h^{-1}\right)$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 17A
14 - Answers

$$
3 \pm \frac{\sqrt{6}}{2}
$$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 17A

15 - Answers

https://www.madasmaths.com/archive/iygb practice papers/c3 pract ice papers/c3 n solutions.pdf

