

2

For each of the following functions, whose domain is the set of **positive** real numbers, sketch the function and hence state the range.

For each function find its inverse

(a) $f(x) = \frac{1}{x+1}$ (b) $f(x) = (x+1)^2 - 1$ (c) $f(x) = x^2 + 4x + 5$

3

(a)Sketch the two inequalities y < (2 - x)(3 + x) and $y - x \ge 2$

(b) shade the region that satisfies both inequalities

4

For each of the following functions, find the interval on which the function is: (ii) concave (i) convex (a) $f(x) = x^3 - 3x^2 + x - 2$ (b) $f(x) = x^4 - 3x^3 + 2x - 1$ (c) $f(x) = \sin x, 0 < x < 2\pi$ (d) $f(x) = x^2 + 3x - 7$ (e) $f(x) = e^x - x^2$ (f) $f(x) = \ln x, x > 0$

TAP FOR ANSWERS

5

Differentiate tan x from first principles

6

Given that $e^{2x} + e^{2y} = xy$, find $\frac{dy}{dx}$ in terms of x and y.

10

(a) Sketch the graph of y = |2x + a|, a > 0, showing the coordinates of the points where the graph meets the coordinate axes.

(b) On the same axes, sketch the graph of $y = \frac{1}{x}$

(c) Explain how your graphs show that there is only one solution of the equation x|2x + a| - 1 = 0

(d) Find, using algebra, the value of x for which x|2x + a| - 1 = 0.

11

Solve the following equations in the range $0 \le x \le 360^{\circ}$

- (a) $\cos 2x = 3\sin x + 2$
- (b) $\sec^2 2x = 2tan2x$
- (c) $cosec^2\left(\frac{x}{2}\right) = \sqrt{3}\cot\left(\frac{x}{2}\right) + 1$

12

We can then write

$$4sin\theta + 3cos\theta = 5\sin(\theta + 36.87^{\circ})$$

Questions:

(a) Write $\sqrt{3}sin\theta + 3cos\theta$ in the form $Rsin(\theta + \alpha)$

(b) Write $12sin\theta + 5cos\theta$ in the form $Rsin(\theta + \alpha)$

TAP FOR ANSWERS

13

(a) Express 200 sin θ – 150 cos θ in the form $R \sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the value of α to 4 decimal places.

The electrical field strength, E V/m, in a microwave of width 25 cm can be modelled using the equation

$$E = 1700 + 200\sin\left(\frac{4\pi x}{25}\right) - 150\cos\left(\frac{4\pi x}{25}\right)$$

where *x* is the distance in cm from the left hand edge of the microwave oven.

(b) (i) Calculate the maximum value of *E* predicted by this model. (ii) Find the values of *x*, for $0 \le x < 25$, where this maximum occurs.

(c) Food in the microwave will heat best when the electric field strength at the centre of the food is above 1800 V/m. Find the range of possible locations for the centre of the food.

14

What function approximates

cosx+tanx-1

sinx

when x is small?

Use your function to find the value of $x = \frac{\pi}{20}$ leaving your answer in terms of π .

TAP FOR ANSWERS

15

A curve C is given parametrically by the equations

$$x = 4t^2 + t$$
, $y = \frac{1}{2}t^2 + 2t^3$, $t \in \mathbb{R}$.

The point $A\left(\frac{1}{2}, -\frac{1}{8}\right)$ lies on C.

a) Show that the gradient at A is $-\frac{1}{3}$.

b) By considering $\frac{y}{x}$, or otherwise, show that a Cartesian equation of C is

$$x^3 = 16y^2 + 2xy.$$

15

Complete this old spec paper

https://www.madasmaths.com/archive/iygb_practice_papers/c3_practice_p apers/c3_m.pdf

2 - Answers

TAP TO RETURN

Proof	TAP T
	TAP TO RETURN

	4 - Answers	
(a) (i) (1,∞)	(ii) (−∞, 1)	
(b) (i) $(-\infty, 0) \cup \left(\frac{3}{2}, \infty\right)$	(ii) $\left(0,\frac{3}{2}\right)$	
(c) (i) (π, 2π)	(ii) (0,π)	
(d) (i) nowhere	(ii) $(-\infty,\infty)$	AP T
(e) (i) (ln 2,∞)	(ii) (−∞, ln 2)	O RE
(f) (i) nowhere	(ii) (0,∞)	TAP TO RETURN

11 - Answers

(a) 210°, 330°, 270° (b) 292.5, 202.5, 112.5, 22.5 degrees (c) 60, 180 degrees TAP TO RETURN

12 - Answers

Check solutions by choosing a random value for θ (e.g. $\theta = 30^{\circ}$) and substituting this back into the two different forms, in the same way you did at the beginning of this question.

TAP TO RETURN

13 - Answers

(a) $R = 250, \alpha = 0.6435$ (b) (i) 1950 V/m (ii) x = 4.41 cm, x = 16.91 cm (c) $2.10 \le x \le 6.71, 14.60 \le x \le 19.21$ TAP TO RETURN

Proof	
	TAP TO
	TAP TO RETURN

16 - Answers

https://www.madasmaths.com/archive/iygb_practice_papers/c3_practice_p apers/c3_m_solutions.pdf

TAP TO RETURN