Find:
(a) $\int 3 \sec 4 x \tan 4 x d x$
(b) $\int-2 \sec ^{4} 2 x \tan 2 x d x$
(c) $\int \frac{2 x-1}{x^{2}-x} d x$
(d) $\int \frac{2}{3-x}+\frac{6}{4 x+1} d x$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 16A

2

For each of the following functions, whose domain is the set of positive real numbers, sketch the
function and hence state the range.
For each function find its inverse
(a) $f(x)=\frac{1}{x+1}$
(b) $f(x)=(x+1)^{2}-1$
(c) $f(x)=x^{2}+4 x+5$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 16A

3

(a)Sketch the two inequalities $y<(2-x)(3+x)$ and $y-x \geq 2$
(b) shade the region that satisfies both inequalities

BHASVIC Mo'THS A1 DOUBLES ASSIGNMENT 16A

4

For each of the following functions, find the interval on which the function is:
(i) convex
(ii) concave
(a) $\mathrm{f}(x)=x^{3}-3 x^{2}+x-2$
(b) $\mathrm{f}(x)=x^{4}-3 x^{3}+2 x-1$
(c) $\mathrm{f}(x)=\sin x, 0<x<2 \pi$
(d) $\mathrm{f}(x)=x^{2}+3 x-7$
(e) $\mathrm{f}(x)=e^{x}-x^{2}$
(f) $\mathrm{f}(x)=\ln x, x>0$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 16A

5

Differentiate $\tan \mathrm{x}$ from first principles

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 16A

6

Given that $e^{2 x}+e^{2 y}=x y$, find $\frac{d y}{d x}$ in terms of x and y.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 16A

7

Given that $\int_{0}^{\theta} 4 \sin 2 x \cos ^{4} 2 x d x=\frac{4}{5}$ where $0<\theta<\pi$, find the exact value of θ.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

8
Evaluate the following

$$
\lim _{\delta x \rightarrow 0} \sum_{x=1}^{2}\left(x^{\frac{3}{2}}-8 x^{-\frac{3}{2}}\right)^{2} d x
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 16A

9

Find:
(a) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 4 \sin ^{2}\left(\frac{x}{2}\right) d x$
(b) $\int \frac{2}{\cos ^{2}\left(\frac{x}{2}\right)} d x$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 16A

10
(a) Sketch the graph of $y=|2 x+a|, a>0$, showing the coordinates of the points where the graph meets the coordinate axes.
(b) On the same axes, sketch the graph of $y=\frac{1}{x}$
(c) Explain how your graphs show that there is only one solution of the equation $x|2 x+a|-1=0$
(d) Find, using algebra, the value of x for which $x|2 x+a|-1=0$.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 16A

11

Solve the following equations in the range $0 \leq x \leq 360^{\circ}$
(a) $\cos 2 x=3 \sin x+2$
(b) $\sec ^{2} 2 x=2 \tan 2 x$
(c) $\operatorname{cosec}^{2}\left(\frac{x}{2}\right)=\sqrt{3} \cot \left(\frac{x}{2}\right)+1$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 16A

12

We can then write

$$
4 \sin \theta+3 \cos \theta=5 \sin \left(\theta+36.87^{\circ}\right)
$$

Questions:
(a) Write $\sqrt{3} \sin \theta+3 \cos \theta$ in the form $R \sin (\theta+\alpha)$
(b) Write $12 \sin \theta+5 \cos \theta$ in the form $\mathrm{R} \sin (\theta+\alpha)$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 16A

13

(a) Express $200 \sin \theta-150 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give the value of α to 4 decimal places.

The electrical field strength, $E \mathrm{~V} / \mathrm{m}$, in a microwave of width 25 cm can be modelled using the equation

$$
E=1700+200 \sin \left(\frac{4 \pi x}{25}\right)-150 \cos \left(\frac{4 \pi x}{25}\right)
$$

where x is the distance in cm from the left hand edge of the microwave oven.
(b) (i) Calculate the maximum value of E predicted by this model.
(ii) Find the values of x, for $0 \leq x<25$, where this maximum occurs.
(c) Food in the microwave will heat best when the electric field strength at the centre of the food is above $1800 \mathrm{~V} / \mathrm{m}$. Find the range of possible locations for the centre of the food.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 16A

14

What function approximates
$\frac{\cos x+\tan x-1}{\sin x}$
when x is small?

Use your function to find the value of $x=\frac{\pi}{20}$ leaving your answer in terms of π.

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

15

A curve C is given parametrically by the equations

$$
x=4 t^{2}+t, \quad y=\frac{1}{2} t^{2}+2 t^{3}, \quad t \in \mathbb{R}
$$

The point $A\left(\frac{1}{2},-\frac{1}{8}\right)$ lies on C.
a) Show that the gradient at A is $-\frac{1}{3}$.
b) By considering $\frac{y}{x}$, or otherwise, show that a Cartesian equation of C is

$$
x^{3}=16 y^{2}+2 x y .
$$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 16A

15

Complete this old spec paper
https://www.madasmaths.com/archive/iygb practice papers/c3 practice p apers/c3 m.pdf

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

1 - Answers

(a) $\frac{3}{4} \sec 4 x+c$
(b) $-\frac{1}{4} \sec ^{4} 2 x+c$
(c) $\ln \left|x^{2}-x\right|+c$
(d) $-2 \ln |3-x|+\frac{3}{2} \ln |4 x+1|+c$

N\&ก17y 01 d d 1

BHASVIC M α 'THS

A1 DOUBLES ASSIGNMENT 16A

2 - Answers

(a) $0<f(x)<1 ; f^{-1}(x)=\frac{1-x}{x}$
(b) $f(x) \geq 0 ; f^{-1}(x)=(x+1)^{\frac{1}{2}}-1$
(c) $f(x) \geq 5 ; f^{-1}(x)=(x-1)^{\frac{1}{2}}-2$

N\&ก17y 01 dYI

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

3 - Answers

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 16A

4 - Answers

(a) (i) $(1, \infty)$
(ii) $(-\infty, 1)$
(b) (i) $(-\infty, 0) \cup\left(\frac{3}{2}, \infty\right)$
(ii) $\left(0, \frac{3}{2}\right)$
(c) (i) $(\pi, 2 \pi)$
(ii) $(0, \pi)$
(d) (i) nowhere
(ii) $(-\infty, \infty)$
(e) (i) $(\ln 2, \infty)$
(ii) $(-\infty, \ln 2)$
(f) (i) nowhere
(ii) $(0, \infty)$

Nyก1ヨy $01 \mathrm{~d} \forall 1$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

5 - Answers

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

6 - Answers

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 16A

7- Answers

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 16A

9 - Answers
(a) $\frac{\pi}{6}-\sqrt{3}+\sqrt{2}$
(b) $4 \tan \left(\frac{x}{2}\right)+c$

Nyกㅋy $01 \mathrm{~d} \forall \perp$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

10 - Answers

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

11 - Answers
(a) $210^{\circ}, 330^{\circ}, 270^{\circ}$
(b) $292.5,202.5,112.5,22.5$ degrees
(c) 60,180 degrees

TAP TO RETURN

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

12 - Answers

Check solutions by choosing a random value for θ (e.g. $\theta=30^{\circ}$) and
substituting this back into the two different forms, in the same way you did at the beginning of this question.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 16A

13-Answers
(a) $R=250, \alpha=0.6435$
(b) (i) $1950 \mathrm{~V} / \mathrm{m} \quad$ (ii) $x=4.41 \mathrm{~cm}, x=16.91 \mathrm{~cm}$
(c) $2.10 \leq x \leq 6.71,14.60 \leq x \leq 19.21$

TAP TO RETURN

BHASVIC Ma'THS

A1 DOUBLES ASSIGNMENT 16A

14 - Answers

$$
1-\frac{x}{2} ; \frac{1}{20}\left(1-\frac{\pi}{2}\right)
$$

N\&ก17y 01 d d 1

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

15 - Answers

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 16A

16 - Answers

https://www.madasmaths.com/archive/iygb practice papers/c3 practice p apers/c3 m solutions.pdf	
	-1 - 0 0 0 0 1 c 0

