1 a

Sketch and state the ranges of the following functions (defined on \mathbb{R}): show asymptotes clearly

(a)
$$f(x) = \frac{1}{x+2} + 1$$

(b)
$$g(x) = 1 - e^{2x}$$

(c)
$$h(x) = \ln(1+x)$$

1 b

The graph shown is the curve of y = f(x).

The curve crosses the x axis at $A\left(\frac{8}{5}, 0\right)$, $B\left(\frac{16}{5}, 0\right)$ and has a turning point at $C\left(\frac{7}{2}, -3\right)$

Sketch, showing the new coordinates of *A*, *B* and *C*:

(a) f(2x)

(b) 3f(x)

(c) f(x) + 3

2

Given

$$f(x) = 2x^3 - 9x^2 - 11x + 30$$

(a) Show that x = 5 is a solution of the equation f(x) = 0

(b) Factorise f(x) as a product of three linear factors

(c) Sketch the graph of f(x)

(d) Find the x coordinate of the points where the line with equation y = 7x + 30 meets the graph of f(x)

3

Differentiate each of the following functions

(a) $\ln 8x$

(b) $2e^x - 2\ln(x^2)$

(c)
$$\frac{3x}{1-\sin x}$$

(d)
$$\frac{e^x}{\ln x}$$

(e) $3\ln x - \ln 3x$

(f) $\ln \sqrt{x} - 2 \ln(1/x)$

TAP FOR ANSWERS

- (c) the value of a and the value of b,
- (d) the value of *x* for which f(x) = 5x.

5

The points A and B have coordinates (4, 6) and (12, 2) respectively. The straight line l_1 passes through A and B.

(a) Find an equation for l_1 in the form ax + by = c, where a, b and c are integers.

The straight line l_2 passes through the origin and has gradient -4.

(b) Write down an equation for l_2 .

(c) The lines l_1 and l_2 intersect at the point *C*. Find the exact coordinates of the mid-point of *AC*.

6a

Integrate the following

$$\int 5(x+3)^4 dx$$
$$\int (x-2)^5 dx$$
$$\int (4x-5)^7 dx$$
$$\int \left(\frac{1}{8}x+1\right)^3 dx$$
$$\int 4\left(3-\frac{1}{2}x\right)^6 dx$$
$$\int (4-x)^8 dx$$

TAP FOR ANSWERS

7

(a) Prove that the derivative of $\sin(3x)$ is $3\cos(3x)$ from first principles

(b) Prove that the derivative of $\cos(3x)$ is $-3\sin(3x)$ from first principles

8

Solve the following equation on the interval $0 \le \theta \le 2\pi$. Give exact answers.

 $\sec^{2}x + \tan x - 1 = 0$ $\sin 2x = 3 \sin x$ $\cos 2x - \sin^{2} x = -2$ $5 \sin 2x = 3 \cos x$ $\tan 2x - \tan = 0$

TAP FOR ANSWERS

A curve *C* has equation $y = \frac{e^{2x}}{(x-2)^2}$, $x \neq 2$.

(a) Show that $\frac{dy}{dx} = \frac{Ae^{2x}(Bx-C)}{(x-2)^3}$ where *A*, *B* and *C* are integers to be found.

(b) Find the equation of the tangent of C at the point x = 1.

10

NEW TECHNIQUES!

You will be familiar with using the inverse trig functions to calculate angles: Eg. Calculate the angle x in the triangle below:

We would write, $\tan x = \frac{opposite}{adjacent} = \frac{10}{15}$ $x = tan^{-1}\left(\frac{10}{15}\right) = 34^{\circ}$

However, from now on we will use the notation *arctan* instead of tan^{-1} (although this is what most calculators use), to distinguish it from $\frac{1}{\tan x}$.

Therefore, the above would be written: $x = \arctan\left(\frac{10}{15}\right) = 34^{\circ}$

We know what the graphs of *sinx*, *cosx* and *tanx* look like, but what do the graphs of *arcsinx*, *arccosx* and arctan *x* look like?

10

NEW TECHNQUES! These can all be drawn by reflecting sections of the graphs sin(x), cos(x) and tan(x) respectively in the line y = x. This can be done following the steps below:

<u>Steps</u>

Draw section of original graph Rotate 90° anticlockwise Flip about y axis

Example, Draw the graph of arcsin(x)

TAP FOR ANSWERS

10

NEW TECHNIQUES!

In the same way, complete the graphs for $\arccos(x)$ and $\arctan(x)$ below (don't forget to also rotate and flip your axes and any asymptotes!).

Draw the graph of $\operatorname{arccos}(x)$ i) Section of $\cos(x)$ ii) Rotate iii) Flip $1 + \frac{1}{2} + \frac{$

You need to be able to draw these confidently, so practise plotting each of these a couple of times.

(a) Which inverse function will never return a negative value? Explain your answer.

11

Split the following into partial fractions:

$$\frac{x^{2} + 5x + 7}{(x+2)^{3}}$$
$$\frac{5x + 1}{x^{3} + x^{2}}$$
$$\frac{1}{(x^{2} - 4)(x-2)}$$

TAP FOR ANSWERS

12

Curve *C* has equation $x = (\arccos y)^2$. Show that

$$\frac{dy}{dx} = -\frac{\sqrt{1 - \cos^2 \sqrt{x}}}{2\sqrt{x}}$$

TAP FOR ANSWERS

13

Double angle and compound angle trig proofs

14

$$f(x) = 3x + 2$$
 and $g(x) = \frac{1}{x}$ with $x \neq 0$

(a) Find $f^{-1}(x)$, $g^{-1}(x)$ and gf(x)

(b) Show that $(gf)^{-1}(x) = f^{-1}g^{-1}(x) = \frac{1}{3}(\frac{1}{x} - 2)$

Note: you will need to show *both* that $f^{-1}g^{-1}(x) = \frac{1}{3}\left(\frac{1}{x} - 2\right)$ and that $(gf)^{-1}(x) = \frac{1}{3}\left(\frac{1}{x} - 2\right)$.

15

Find the inverses of the following functions where each function is defined on its given domain, $x \in \mathbb{R}$

(a)
$$f(x) = (x-1)^2 + 4, x \ge 1$$

(b) *
$$f(x) = x^2 + 4x - 1, x \ge -2$$

(c)
$$*f(x) = x^2 + 4, x \ge -2$$

* complete the square first

15

Complete this old spec paper

https://www.madasmaths.com/archive/iygb practice papers/c1 practice pape rs/c1 p.pdf

1a - Answers

Check sketches on Desmos

- (a) $f(x) \in \mathbb{R}, f(x) \neq -2$
- (b) $g(x) \in \mathbb{R}, g(x) < 1$

(c) $h(x) \in \mathbb{R}$,

1 b - Answers

(a)
$$A' = \left(\frac{4}{5}, 0\right), B' = \left(\frac{8}{5}, 0\right), C' = \left(\frac{7}{4}, -3\right)$$

(b) $A' = \left(\frac{8}{5}, 0\right), B' = \left(\frac{16}{5}, 0\right), C' = \left(\frac{7}{2}, -9\right)$
(c) $A' = \left(\frac{8}{5}, 3\right), B' = \left(\frac{16}{5}, 3\right), C' = \left(\frac{7}{2}, 0\right)$

2 - Answers

(a) Proof

(b) (x-5)(2x-3)(x+2)

(c) Graph

(d)
$$x = -\frac{3}{2}, 0, 6$$

3 - Answers

(a)
$$\frac{1}{x}$$

(b) $2e^{x} - \frac{4}{x}$
(c) $\frac{3-3 \sin x + 3x \cos x}{(1-\sin x)^{2}}$
(d) $\frac{e^{x}(x \ln x - 1)}{x(\ln x)^{2}}$
(e) $\frac{2}{x}$
(f) $\frac{5}{2x}$

4 - Answers

(a) and (b) use graph sketching app

(c)
$$a = -2, b = -2$$

(d) $x = -\frac{1}{6}$

5 - Answers

(a) x + 2y - 16 = 0(b) y = -4x(c) $\left(\frac{6}{7}, \frac{53}{7}\right)$

6a - Answers	
$\frac{(x+3)^5 + C}{(x-2)^6} + C$ $\frac{1}{32}(4x-5)^8 + C$ $2\left(\frac{1}{8}x+1\right)^4 + C$ $-\frac{8}{7}\left(3-\frac{1}{2}x\right)^7 + C$ $-\frac{1}{9}(4-x)^9 + C$	TAP TO RETURN

6b - Answers

$$\frac{1}{3}\sec 3x + C$$

$$-\cot x + C$$

$$-\frac{1}{4}\cos 4x + C$$

$$\frac{1}{2}(-3\cot 2x + \csc 2x) + C$$

$$\sin x + \cos x + C$$

7 - Answers

Proof

8 - Answers

 $0, \pi, 2\pi$ $\frac{\pi}{2}$

 $\frac{\pi}{2}$, 0.305, 2.84

0, π, 2π

 $0, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}, 2\pi$

9 - Answers

(a)
$$\frac{(x-2)^2 (2e^{2x}) - e^{2x} [2(x-2)]}{(x-2)^4} = \frac{2(x-2)^2 e^{2x} - 2e^{2x} (x-2)}{(x-2)^4}$$
$$= \frac{2(x-2)e^{2x} - 2e^{2x}}{(x-2)^3} = \frac{2e^{2x} (x-2-1)}{(x-2)^3} = \frac{2e^{2x} (x-3)}{(x-2)^3}$$
$$A = 2, B = 1, C = 3$$

(b)
$$y = 4e^2x - 3e^2$$

10 - Answers

Check your graphs are correct on desmos.com

(a) $\arccos(x)$, because its graph is never negative

11 - Answers

Check your answer by subbing in x = 0.01 into both sides. They should equal the same number correc to 6 dp.

12 - Answers

$$\frac{dy}{dx} = 2 \arccos y \times -\frac{1}{\sqrt{1-y^2}} = -\frac{2 \arccos y}{\sqrt{1-y^2}}$$
$$\frac{dy}{dx} = -\frac{\sqrt{1-y^2}}{2 \arccos y} = -\frac{\sqrt{1-\cos^2 \sqrt{x}}}{2\sqrt{x}}$$

13 - Answers

Proof

14 - Answers

 $f^{-1}(x) = \frac{1}{3}(x-2), \quad g^{-1}(x) = \frac{1}{x}, x \neq 0, \quad gf(x) = \frac{1}{3}(x+2), x \neq -\frac{2}{3}$

15 - Answers

(a) $f^{-1}(x) = 1 + \sqrt{x - 4}$ (b) $f^{-1}(x) = -2 + \sqrt{x + 5}$ (c) $f^{-1}(x) = \sqrt{x + 4} - 2$

15 - answers

https://www.madasmaths.com/archive/iygb practice papers/c1 practice pape rs/c1 p solutions.pdf