A person throws a ball in a sports hall. The height of the ball, *h* m, can be modelled in relation to the horizontal distance from the point it was thrown from by the quadratic equation: $h = -\frac{3}{10}x^2 + \frac{5}{2}x + \frac{3}{2}$

The hall has a sloping ceiling which can be modelled with equation $h = \frac{15}{2} - \frac{1}{5}x$.

Determine whether the model predicts that the ball will hit the ceiling.

2

A geologist is looking for fossils in rocks. In a certain area it has been established over a long period of time that 10% of the rocks contain fossils. The geologist selects twenty rocks from this area.

a) State two conditions that must apply for a binomial model to be valid

Find the probability that in the geologists sample there will be

- b) One rock containing fossils
- c) At least one rock containing fossils

The geologists selects a new sample of n rocks

She wants to have at least 95% chance that her new sample will contain fossils

d) Determine the smallest value of n

3

A car accelerates at a constant rate, starting from rest at a point A and reaching a speed of 65 km s⁻¹ 26 s. This speed is then maintained and the car passes a point B 3 minutes after leaving A.

(a) Sketch a speed-time graph to illustrate the motion of the car.

(b) Find the distance from *A* to *B*.

4

Draw a force diagram and resolve forces horizontally and vertically. N.B. In the case o limiting friction, $F = \mu R$, where *R* is the normal reaction.

An airline passenger pushes a 15kg suitcase along the floor with his foot. A force (P) of 60N is needed to move the suitcase. Find:-

(a) the co-efficient of friction.

(b) the force needed to give the suitcase an acceleration of 0.2ms^{-2} .

5

TAP FOR ANSWERS

Two masses of 3kg and 2kg are suspended either end of a light inextensible string which passes over a smooth fixed peg. The particles are held in the positions shown, with the string taut; they are then released from rest. Construct separate equations for each of the masses. Find the tension in the string and the acceleration of the particles.

6

[In this question, the horizontal unit vectors **i** and **j** are directed due East and North respectively.]

A coastguard station O monitors the movements of ships in a channel. At noon, the station's radar records two ships moving with constant speed. Ship A is at the point with position vector $(-5\mathbf{i} + 10\mathbf{j})$ km relative to O and has velocity $(2\mathbf{i} + 2\mathbf{j})$ km h⁻¹. Ship B is at the point with position vector $(3\mathbf{i} + 4\mathbf{j})$ km and has velocity $(-2\mathbf{i} + 5\mathbf{j})$ km h⁻¹.

(a) Given that the two ships maintain these velocities, show that they collide. The coast guard radios ship A and orders it to reduce its speed to move with velocity $(\mathbf{i} + \mathbf{j}) \text{ km } \text{h}^{-1}$.

Given that A obeys this order and maintains this new constant velocity,

- (b) find an expression for the vector \overrightarrow{AB} at time t hours after noon.
- (c) find, to 3 significant figures, the distance between A and B at 1400 hours,
- (d) find the time at which *B* will be due north of *A*.

7

(a) By completing the square, find in terms of the constant k the roots of the equation $x^2 + 4kx - k = 0$

(b) Hence or otherwise find the set of values of k for which the equation has

(i) no real roots

(ii) one repeated root

(iii)real roots

8

(a) Find the equation of the circle where the points (1, 0) and (3, 0) are at either end of the diameter.

(b) The circle has a tangent at point A that also passes through the point B (6, 0). Find the distance AB.

9

The temperature, T °C, of a cup of tea is given by $T = 55e^{-\frac{t}{8}} + 20$ $t \ge 0$, where t is the time in minutes since measurements began. a) Briefly explain why $t \ge 0$ b) State the starting temperature of the cup of tea. c) Find the time at which the temperature of the tea is 50 °C, giving your answer to the nearest minute. d) By sketching the graph or otherwise, explain why the temperature of the tea will never fall below 20 °C

10

The diameters of 100 pebbles were measured. The measurements rounded to the nearest millimetre, x, are summarised in the table.

X	$10 \leq x \leq 19$	$20 \leq x \leq 24$	$25 \leq x \leq 29$	$30 \leq x \leq 49$
Number of stones	25	22	29	24

These data are to be presented on a statistical diagram.

(a) For a histogram, find the frequency density of the $10 \le x \le 19$ class.

(b) For a cumulative frequency graph, state the coordinates of the first two points that should be plotted.

(c) Why is it not possible to draw an exact box-and-whisker plot to illustrate the data?

11

(a) A bag contains 12 red discs and 10 black discs. Two discs are removed at random, without replacement. Find the probability that both discs are red.

(b) Another bag contains 7 green discs and 8 blue discs. Three discs are removed at random, without replacement. Find the probability that exactly two of these discs are green.

12

Use your calculators to work out the following				
(a) For X ~ B $(6, \frac{1}{3})$				
(i) P(X=4)	(ii) P(X≤2)		11	
(b) For X ~ B (8, 0.4)				
(i) P(X=2)	(ii) P(X=0)	(ii) P(X>6)	DR A	
(c) For X ~ B (10, 0.45) find:				
(i) $P(X = 6)$	(ii) $P(X \le 3)$		ERS	

13

Find the following values of x for the various distributions

(a) $X \sim B(20, 0.2)$ $P(X \le x) \le 0.05$ $P(X \ge x) \ge 0.05$

```
(b) X \sim B(10,0.3)
P(X \le x) \le 0.025
P(X \ge x) \ge 0.025
```

```
(c) X \sim B(15, 0.35)
P(X \le x) \le 0.01
P(X \ge x) \ge 0.01
```

TAP FOR ANSWERS

14

One plastic toy aeroplane is given away free in each packet of cornflakes. Equal numbers of red, yellow, green and blue aeroplanes are distributed in the packets. Faye, a customer, has so far collected three colours of aeroplane but still wants a yellow one. Henry, a quality controller employed by the cornflake manufacturer, opens a number of packets of cornflakes at random to check the distribution of the colours.

Find the probability that:

(a) Faye opens 4 more packets but fails to get a yellow aeroplane

(b) Faye gets her first yellow aeroplane in the 5th packet she opens

(c) Henry opens two packets and gets aeroplanes of different colours

(d) Henry opens 4 packets and gets one aeroplane of each colour

15

Complete this old spec C2 paper

https://www.madasmaths.com/archive/iygb practice papers/c2 practice pape rs/c2 n.pdf

1 - Answers

Yes, the ball will hit the ceiling.

2 - Answers

b) 0.2702, c) 0.8787, d)n=29

3 - Answers

(b) 10855 km

4 - Answers

(a) $\mu = 0.408$

(b) P=63N

5 - Answers

(a) 1.96 ms⁻²

(b) T=23.5N

6 - Answers

(b) $AB = (8 - 3t)\mathbf{i} + (-6 + 4t)\mathbf{j}$

(c) 2.83 km

(d) 1440 hours

7 - Answers

(a)
$$x = -2k \pm \sqrt{4k^2 + k}$$

(b)
(i) $-\frac{1}{4} < k < 0$ (you must include a sketch)
(ii) $k = -\frac{1}{4}, 0$
(iii) $k \le -\frac{1}{4}$ or $k \ge 0$ (you must include a sketch)

8 - Answers

(a) $(x-2)^2 + y^2 = 1$

(b) $\sqrt{15}$

9 - Answers

- a) We cannot go backwards in time
- b) 75 °C
- c) 5 minutes
- d) The exponential term will always be positive so the overall temperature will be greater than 20 $^{\circ}\mathrm{C}$

10 - Answers

(a) 2.5

(b) (0, 0), (19.5, 25)

11 - Answers

12 - Answers

(a) 0.0823 0.6804

(b) 0.209 0.0168 0.0085

(c) 0.1596 0.2660

13 - Answers

(a)	0,	7
· /		

(b) N/A, 6

(c) 0, 10

14 - Answers

(a)
$$\frac{81}{256}$$
 (b) $\frac{81}{1024}$ (c) $\frac{3}{4}$ (d) $\frac{3}{32}$

15 - Answers

https://www.madasmaths.com/archive/iygb practice papers/c2 practice pape rs/c2 n marks.pdf