BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

1

A manufacturer of tennis balls has a daily cost $C(x)=200-10 x+0.01 x^{2}$ where C is the total cost in $£$ and x is the number of tennis balls produced.
(a) Write C in the form $-A+B(x-C)^{2}$ where A, B, C are constants to be found
(b) What number of tennis balls produces the minimum cost?

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12A

2

A cubic polynomial is defined as

$$
p(x)=x^{3}-4 x^{2}+x+6
$$

(a) Fully factorise the cubic
(b) Sketch the cubic

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12A

3

$$
f(x)=\frac{5 x^{2}+7 x}{2 x^{4}}
$$

(a) Split $f(x)$ into two fractions and find an expression for $f^{\prime}(x)$
(b) Now consider the functions $g(x)=5 x^{2}+7 x$ and $h(x)=2 x^{4}$. Find expressions for $\mathrm{g}^{\prime}(\mathrm{x})$ and $\mathrm{h}^{\prime}(\mathrm{x})$
(c) Now, $f(x)=\frac{g(x)}{h(x)}$ Which one of the following rules is true?

A $\quad f(x)=\frac{g^{\prime}(x)}{h^{\prime}(x)}$
B $\quad f(x)=\frac{g^{\prime}(x) h(x)+g(x) h^{\prime}(x)}{h(x)}$
C $\quad f(x)=\frac{g^{\prime}(x) h(x)-g(x) h \prime(x)}{h(x)^{2}}$
D $\quad f(x)=\frac{g^{\prime}(x) h(x)+g(x) h^{\prime}(x)}{h(x)^{2}}$
E

$$
f(x)=\frac{g(x) h^{\prime}(x)-g^{\prime}(x) h(x)}{h(x)}
$$

$f(x)=\frac{g(x) h^{\prime}(x)-g \prime(x) h(x)}{h(x)}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12A

4
The circle C has equation $x^{2}+y^{2}-12 x+8 y+16=0$
(a) Find the centre and radius of C
(b) Given that C crosses the x axis at the points A and B, find the length $A B$ giving your answer in the form $k \sqrt{5}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 12A

5

Algebraic Division \& Algebraic Fractions
(a) Simplify $\frac{3 x^{2}-x-2}{x^{2}-1}$
(b) Hence, or otherwise, express $\frac{3 x^{2}-x-2}{x^{2}-1}-\frac{1}{x(x+1)}$ as a single fraction in its simplest form

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

6

A large tank is in the shape of a cuboid with a rectangular base and no top. Two of the vertical opposite faces of the cuboid are square and the height of the cuboid is x metres.
(a) given that the surface area of the tank is $54 \mathrm{~m}^{2}$, show that the capacity, V , of the tank is given by $V=18 x-\frac{2}{3} x^{3}$.
(b) Find the maximum value for V , fully justifying the fact that it is the maximum value.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

7

Solve these equations for $0 \leq \theta \leq 360^{\circ}$, giving θ to 1 decimal place where appropriate:
(a) $\sin \left(\theta+15^{\circ}\right)=3 \cos \left(\theta+15^{\circ}\right)$
(b) $\sin \theta \cos \theta=\frac{1}{2}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

8

The circle C has equation $x^{2}-2 k x+y^{2}-k y+15=0$. The line l passes through the point $P(5,9)$, has gradient 2 , and is a tangent to the circle C.

Find the value of k, where k is a positive constant

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

9

The figure above shows the curve with equation

$$
y=x^{3}-12 x^{2}+45 x-34
$$

The points A and B lie on the curve, where $x=1$ and $x=4$ respectively. The finite region R is bounded by the curve and the straight line segment $A B$. Show that the area of R, shown shaded in the figure is $\frac{81}{4}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

10

Prove that every integer that is a perfect cube is a multiple of 9 or is one more than a multiple of 9 or is one less than a multiple of 9 .

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12A

11

Use your knowledge of the approximations for $\cos x$ and $\sin x$, to find the value of
(a) $\frac{\cos 3 x-1}{x^{2}}$
(b) $\frac{\cos 3 x-1}{x \sin 4 x}$
(c) $\frac{4 x \sin 2 x}{x^{2}}$
for small values of x.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 12A

12

Prove the following identities:
(a) $\tan ^{2} x+\cot ^{2} x \equiv \sec ^{2} x+\operatorname{cosec}^{2} x-2$
(b) $\left(\sec ^{2} x+\tan ^{2} x\right)\left(\operatorname{cosec}^{2} x+\cot ^{2} x\right) \equiv 1+2 \sec ^{2} x \operatorname{cosec}^{2} x$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

13

By using the chain rule find $\frac{d y}{d x}$
(a) $y=\left(4 x^{2}-3\right)^{5}$
(b) $y=\frac{1}{\left(7-2 x^{3}\right)}$
(c) $y=\sqrt{4 x+2 x^{2}}$
(d) $y=\sin 3 x$
(e) $y=\sin ^{2} x$
(f) $y=\sin \left(x^{2}\right)$
(g) $y=\cos ^{2} 3 x$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12A

14

1. By using the product rule find $\frac{d y}{d x}$ simplifying your answers
(a) $y=x^{4}\left(x^{5}-2\right)^{6}$
(b) $y=x^{2} \sin x$
(c) $y=\sqrt{x} \cos 3 x$
2. By using the quotient rule find the derivatives of the following:
(a) $\frac{x+3}{2 x+1}$
(b) $\frac{3 x^{2}}{(2 x-1)^{2}}$
(c) $\frac{x^{4}}{\cos 3 x}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 12A

15

1. Complete this old spec paper
https://www.madasmaths.com/archive/iygb practice papers/c1 practice papers/c1 n.pdf
2.

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12A
1 - Answers
(a) $A=2300, B=0.01, C=500$
(b) 500

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12A

2 - Answers

$$
(x-3)(x-2)(x+1)
$$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 12A
3 - Answers
(a) $-\frac{5}{x^{3}}-\frac{21}{2 x^{4}}$
(b) $10 x+7,8 x^{3}$
(c) C

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12A

4 - Answers

(a) Centre $(6,-4)$ radius 6
(b) $k=4$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 12A
5 - Answers
a) $\frac{3 x+2}{x+1}$
b) $\frac{3 x-1}{x}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12A

6 - Answers

(b) 36

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12A

7 - Answers

(a) $56.6^{\circ}, 236.6^{\circ}$
(b) $45^{\circ}, 225^{\circ}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 12A
8 - Answers

$$
\mathrm{k}=4
$$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12A

9 - Answers

Proof

Nyחㅋy $01 \mathrm{~d} \forall 1$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12A

10 - Answers
Proof

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 12A
11-Answers
(a) $-\frac{9}{2}$
(b) $-\frac{9}{8}$
(c) 8

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 12A

12 - Answers

Proof

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 12A

13 - Answers

(a) $40 x\left(4 x^{2}-3\right)^{4}$
(b) $\frac{6 x^{2}}{\left(7-2 x^{3}\right)^{2}}$
(c) $\frac{2+2 x}{\sqrt{4 x+2 x^{2}}}$
(d) $3 \cos 3 x$
(e) $2 \sin x \cos x$
(f) $2 x \cos \left(x^{2}\right)$ (g) $-6 \cos 3 x \sin 3 x$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 12A

14 - Answers

1. (a) $2 x^{3}\left(x^{5}-2\right)^{5}\left(17 x^{5}-4\right)$
(b) $x^{2} \cos x+2 x \sin x$ (c) $-3 \sqrt{x} \sin 3 x+\frac{\cos 3 x}{2 \sqrt{x}}$
2. (a) $\frac{-5}{(2 x+1)^{2}}$ (b) $\frac{-6 x}{(2 x-1)^{3}}$ (c) $\frac{x^{5}(3 x \sin 3 x+4 \cos 3 x)}{\cos ^{2} x}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 12A

15 - Answers

1.

https://www.madasmaths.com/archive/iygb practice papers/c1 practice papers/c1 n marks.pdf
2.

