BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11B

(a) By calculating the discriminant of $x^{2}+4 x+8=0$ explain why $x^{2}+4 x+$ 8 is always positive.
(b) By completing the square, explain why $x^{2}+4 x+8$ is always positive.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

2

(a) Sketch the graph of $y=x^{3}-6 x^{2}+9 x$
(b) The point with coordinates $(-1,0)$ lies on the curve with equation $y=$ $(x+a)^{3}-6(x+a)^{2}+9(x+a)$ where a is a constant. Find the two possible values of a

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

3

Evaluate the exact value of the following integrals:
(a)

$$
\int_{0}^{\sqrt{2}} 2 x-1 d x
$$

(b)

$$
\int_{1}^{2} \sqrt{x}-2 d x
$$

(c)

$$
\int_{1}^{\sqrt{3}} \frac{x^{2}-2}{4 x^{2}} d x
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

4

A, B and C are three points on a straight road such that $A B=80 \mathrm{~m}$ and $B C=60$ m . A car travelling with uniform acceleration takes 4 seconds to travel between $A \& B$, and 2 seconds to travel between $B \& C$. Modelling the car as a particle, find its acceleration and its velocity at A.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 11B

5

A paraglider of mass 90 kg is pulled by a rope attached to a speedboat. With the rope making an angle of 20° to the horizontal the paraglider is moving in a straight line parallel to the surface of the water with an acceleration of $1.2 \mathrm{~ms}^{-2}$. The tension in the rope is 250 N . By drawing a force diagram and resolving forces horizontally and vertically calculate the magnitude of the vertical force acting on the person, and the magnitude of the air resistance (R). Let (L) be the lift generated by the wings.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

6

A particle is projected from a point with speed $21 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation α and moves freely under gravity. When the particle has moved a horizontal distance $x \mathrm{~m}$, its height above the point of projection is $y \mathrm{~m}$.
(a) Show that $y=x \tan \alpha-\frac{x^{2}}{90 \cos ^{2} \alpha}$
(b) Given that $y=8.1$ when $x=36$, find the value of $\tan \alpha$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

7

Two ships P and Q are moving with constant velocities. Ship P moves with velocity $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$ and ship Q moves with velocity $(3 \mathbf{i}+4 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$.
(a) Find, to the nearest degree, the bearing on which Q is moving.

At 2 p.m., ship P is at the point with position vector $(\mathbf{i}+\mathbf{j}) \mathrm{km}$ and $\operatorname{ship} Q$ is at the point with position vector $(-2 \mathbf{j}) \mathrm{km}$.

At time t hours after 2 p.m., the position vector of P is $\mathbf{p} \mathrm{km}$ and the position vector of Q is $\mathbf{q} \mathrm{km}$.
(b) Write down expressions, in terms of t, for
(i) \mathbf{p},
(ii) \mathbf{q},
(iii) $\overrightarrow{P Q}$
(c) Find the time when
(i) Q is due north of P,
(ii) $\quad Q$ is north-west of P.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

8
The circle C has equation $(x+5)^{2}+(y+3)^{2}=80$.
The line I is a tangent to the circle and has gradient 2.
Find two possible equations for / giving your answers in the form $y=m x+c$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

9

$f(x)=\sin x$
Use differentiation from first principles to prove that $f^{\prime}(x)=\cos x$
(HINT: Use the compound angle formula $\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$)

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

10

$$
f(x)=6 x^{2}\left(x^{3}-7\right)
$$

(a) Multiply out the expression and differentiate to find an expression for $f^{\prime}(x)$
(b) Now consider the functions $g(x)=6 x^{2}$ and $h(x)=x^{3}-7$. Find expressions for $g^{\prime}(x)$ and $h^{\prime}(x)$
(c) Now, $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$.

Which one of the following rules is true?
A $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{h}^{\prime}(\mathrm{x})$
B $\quad f^{\prime}(x)=g^{\prime}(x) h^{\prime}(x)+g(x) h(x)$
C $\quad f^{\prime}(x)=g(x) h^{\prime}(x)+g^{\prime}(x) h(x)$
D $f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

Given that $y^{\frac{1}{2}}=x^{\frac{1}{3}}+3$:
(a) show that $y=x^{\frac{2}{3}}+A x^{\frac{1}{3}}+B$, where A and B are constants to be found.
(b) Hence find $\int y \mathrm{~d} x$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

The line with equation $y=10-x$ cuts the curve with equation $y=2 x^{2}-5 x+4$ at the points A and B, as shown.
(a) find the coordinates of A and the coordinates of B.

The shaded region R is bounded by the line and the curve as shown.
(b) Find the exact area of R.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

13

A boat A has a position vector of $(2 \mathbf{i}+\mathbf{j}) \mathrm{km}$ and a buoy B has a position vector of $(6 \mathbf{i}-4 \mathbf{j}) \mathrm{km}$, relative to a fixed origin O .
a) Find the distance of the boat from the buoy.
b) Find the bearing of the boat from the buoy.

The boat travels with constant velocity ($8 \mathbf{i} \mathbf{- 1 0} \mathbf{j}$) km / h.
c) Verify that the boat is travelling directly towards the buoy.
d) Find the speed of the boat.
e) Work out how long it will take the boat to reach the buoy.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

14

The Venn diagram shows the probabilities that a group of students like pasta (A) or pizza (B).

a) Write down the value of x
b) Determine whether the events "like pasta" and "like pizza" are independent.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

15

Complete this old spec paper

https://www.madasmaths.com/archive/iygb practice papers/c2 practice pape rs/c2 m.pdf

Exclude qs 8

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

1 - Answers

(a) $b^{2}-4 a c=16<0$ so the graph of $y=x^{2}+4 x+8$ does not cut the x axis and therefore $x^{2}+4 x+8$ is always positive.
(b) $x^{2}+4 x+8=(x+2)^{2}+4$
$(x+2)^{2}$ is always positive for all values of x .
$(x+2)^{2}+4 \geq 0$ so $x^{2}+4 x+8$ is always positive.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11B

2 - Answers

(a) Check on DESMOS
(b) $a=1$ or 4

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11B

3 - Answers

(a) $2-\sqrt{2}$
(b) $\frac{4 \sqrt{2}-8}{3}$
(c) $\frac{-9+5 \sqrt{3}}{12}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11B
4 - Answers

$$
a=10 / 3 \mathrm{~ms}^{-2} \quad v=40 / 3 \mathrm{~ms}^{-1}
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

5 - Answers

$$
\mathrm{L}=968 \mathrm{~N}, \mathrm{R}=127 \mathrm{~N}
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11B

6 - Answers

$\tan \alpha=\frac{5}{4}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11B

7 - Answers

(a) 37°
(b) (i) $\mathbf{p}=(\mathbf{i}+\mathbf{j})+t(2 \mathbf{i}-3 \mathbf{j})$
(ii) $\mathbf{q}=(-2 \mathbf{j})+t(3 \mathbf{i}+4 \mathbf{j})$
(iii) $\mathbf{P Q}=\mathbf{q}-\mathbf{p}=(-\mathbf{i}-3 \mathbf{j})+t(\mathbf{i}+7 \mathbf{j})$
(c) (i) 3 pm
(ii) 2.30 pm

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11B
8 - Answers

$$
y=2 x+27 \text { and } y=2 x-13
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11B
9 - Answers
Proof

TAP TO RETURN

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11B

10 - Answers

(a) $30 x^{4}-84 x$
(b) $12 \mathrm{x}, 3 x^{2}$
(c) C and D are both true

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11B
11-Answers
(a) $A=6, B=9$
(b) $\frac{3}{5} x^{\frac{5}{3}}+\frac{9}{2} x^{\frac{4}{3}}+9 x+c$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11B
12 - Answers
(a) $(-1,11)$ and $(3,7)$
(b) $21 \frac{1}{3}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11B

13 - Answers

a) $\sqrt{41} \mathrm{~km}$
b) 321.3°
d) $2 \sqrt{41} \mathrm{~km} \mathrm{~h}^{-1}$
e) 30 mins

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11B

14 - Answers

$\begin{array}{ll}\text { a) } 0.25 & \text { b) Not independent }\end{array}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11B

15 - Answers
https://www.madasmaths.com/archive/iygb practice papers/c2 practice pape rs/c2 m solutions.pdf

