Without using your calculator, find the exact value of:

```
(a) \sin 30^{\circ} \cos 60^{\circ} + \cos 30^{\circ} \sin 60^{\circ}
```

```
(b) \sin 33^{\circ} \cos 27^{\circ} + \cos 33^{\circ} \sin 27^{\circ}
```

```
(c) \frac{\tan 45^\circ + \tan 15^\circ}{1 - \tan 45^\circ \tan 15^\circ}
```

(d)
$$\frac{\tan\frac{7\pi}{12} - \tan\frac{\pi}{3}}{1 + \tan\frac{7\pi}{12}\tan\frac{\pi}{3}}$$

(e) $\sqrt{3}\cos 15^\circ - \sin 15^\circ$

2

Express the following as a single sine, cosine or tangent:

```
(a) \sin 15^{\circ} \cos 20^{\circ} + \cos 15^{\circ} \sin 20^{\circ}
```

```
(b) \sin 58^\circ \cos 23^\circ - \cos 58^\circ \sin 23^\circ
```

 $(c) \frac{\tan 76^\circ - \tan 45^\circ}{1 + \tan 76^\circ \tan 45^\circ}$

(d)
$$\sin \frac{1}{2}\theta \cos 2\frac{1}{2}\theta + \cos \frac{1}{2}\theta \sin 2\frac{1}{2}\theta$$

(e) $\frac{\tan 2\theta + \tan 3\theta}{1 - \tan 2\theta \tan 3\theta}$

3

(a) Find the value of x for which the curve $y = 800x + \frac{2}{x}$, x > 0, has a stationary point.

(b) Using the second derivative, determine whether this point is a local maximum or minimum point.

4

The circle *C* has centre (5, 2) and passes through the point (7, 3).

(a) Find an equation for C
(b) Show that the line y = 2x - 3 is tangent to C and find the coordinates of the point of contact

HINT: Show equal roots

5

Solve the following equation on the interval $0 \le \theta \le 2\pi$. Give answers to 3 decimal places.

$$\frac{4}{\sec^2 x} + 3\cos x = 2\cot x \tan x$$

6

Prove that
$$\cos \theta + \cos \left(\theta + \frac{2\pi}{3}\right) + \cos \left(\theta + \frac{4\pi}{3} = 0\right)$$

You must show each stage of your working.

7

Given that $\sin x(\cos y + 2 \sin y) = \cos x(2 \cos y - \sin y)$, find the value of $\tan(x + y)$

8

Split the following into partial fractions:

a)
$$\frac{3x^2 - 2x + 1}{2x^4 + x}$$

b) $\frac{4x^3 - 12x^2 - 22x - 3}{2x^4 + x^2}$

 $7x - 2x^2 + 4$

9

Show that $\frac{4x^3-6x^2+8x-5}{2x+1}$ can be written in the form $Ax^2 + Bx + C + \frac{D}{2x+1}$ where *A*, *B*, *C* and *D* are constants to be found.

10

Find the area shaded between the line y = 2x - 1 and the curve $y = 3 + 2x - x^2$

11

(a) Sketch the graph of y = ³/_x, remembering to include the equations of any asymptotes. Add to this sketch, the line y = a - 3x which is a tangent to the curve y = ³/_x at the point *A*, and the line y = b - 3x which is tangent to the curve y = ³/_x and the point *B*.
(b) Find the values of *a* and *b*

12

Use differentiation from first principles to prove that:

if $f(x) = 3x^2$, f'(x) = 6x.

13

The point (6, 1) lies on the circle $x^2 + y^2 - 8x - 4y + 15 = 0$.

(a) Find the equation of the normal to the circle at this point

(b) Find the coordinates of the second point at which the normal cuts the circle

14

Disproof by Counter Example

E.g. Show that the statement " $n^2 - n + 1$ is a prime number for all values of n" is untrue. Ans. n=5 since $5^2 - 5 + 1 = 21$ and 21 is not a prime number.

Therefore, the statement is untrue.

a) Prove by counter-example that the product of an odd and even number is never a perfect square.

15

Complete this old spec paper,

https://www.madasmaths.com/archive/iygb_practice_papers /c1_practice_papers/c1_m.pdf

Exclude qs 3 and 7

1 - Answers

2-Answers

TAP TO RETURN

(a) sin 35°
(b) sin 35°
(c) tan 31°
(d) sin 3 <i>θ</i>

(e) $\tan 5\theta$

3 - Answers

(a) $\pm \frac{1}{20}$ (b) $x = \frac{1}{20}$ Minimum (you need to give a reason) $x = -\frac{1}{20}$ Maximum

TAP TO RETURN

4 - Answers

(a)
$$(x-5)^2 + (y-2)^2 = 5$$

(b) (3, 3)

5 - Answers

1.131, 5.152

6 - Answers

Write
$$\theta$$
 as $\left(\theta + \frac{2\pi}{3}\right) - \frac{2\pi}{3}$ and $\theta + \frac{4\pi}{3}$ as $\left(\theta + \frac{2\pi}{3}\right) + \frac{2\pi}{3}$

Use the addition formulae for cos and simplify.

TAP TO RETURN

7 - Answers

8 - Answers

(a)
$$\frac{1}{x} + \frac{-2x^2 + 3x - 2}{2x^3 + 1}$$

(b) $-2x - 1 - \frac{3}{4 - x} + \frac{1}{2x + 1}$

TAP TO RETURN

9 - Answers

A = 2, B = -4, C = 6, D = -11

10 - Answers

11 - Answers

(a) Use desmos

(b) 6 and - 6

12 - Answers

13 - Answers

(a) x + 2y - 8 = 0(b) (2, 3)

14 - Answers

Even number 4 Odd number 9 4x9=36

Since 36 is a perfect square, an even number times an odd number can equal a perfect square, therefore the statement is untrue. TAP TO RETURN

15 - Answers

https://www.madasmaths.com/archive/iygb_practice_pap ers/c1_practice_papers/c1_m_solutions.pdf