BHASVIC M α 'IHS A1 DOUBLES ASSIGNMENT 11A

1

Without using your calculator, find the exact value of:
(a) $\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$
(b) $\sin 33^{\circ} \cos 27^{\circ}+\cos 33^{\circ} \sin 27^{\circ}$
(c) $\frac{\tan 45^{\circ}+\tan 15^{\circ}}{1-\tan 45^{\circ} \tan 15^{\circ}}$
(d) $\frac{\tan \frac{7 \pi}{12}-\tan \frac{\pi}{3}}{1+\tan \frac{7 \pi}{12} \tan \frac{\pi}{3}}$
(e) $\sqrt{3} \cos 15^{\circ}-\sin 15^{\circ}$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 11A

2

Express the following as a single sine, cosine or tangent:
(a) $\sin 15^{\circ} \cos 20^{\circ}+\cos 15^{\circ} \sin 20^{\circ}$
(b) $\sin 58^{\circ} \cos 23^{\circ}-\cos 58^{\circ} \sin 23^{\circ}$
(c) $\frac{\tan 76^{\circ}-\tan 45^{\circ}}{1+\tan 76^{\circ} \tan 45^{\circ}}$
(d) $\sin \frac{1}{2} \theta \cos 2 \frac{1}{2} \theta+\cos \frac{1}{2} \theta \sin 2 \frac{1}{2} \theta$
(e) $\frac{\tan 2 \theta+\tan 3 \theta}{1-\tan 2 \theta \tan 3 \theta}$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

3

(a) Find the value of x for which the curve $y=800 x+$ $\frac{2}{x}, x>0$, has a stationary point.
(b) Using the second derivative, determine whether this point is a local maximum or minimum point.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

4
The circle C has centre $(5,2)$ and passes through the point (7, 3).
(a) Find an equation for C
(b) Show that the line $y=2 x-3$ is tangent to C and find the coordinates of the point of contact

HINT: Show equal roots

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 11A

5

Solve the following equation on the interval $0 \leq \theta \leq 2 \pi$. Give answers to 3 decimal places.

$$
\frac{4}{\sec ^{2} x}+3 \cos x=2 \cot x \tan x
$$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

6

Prove that $\cos \theta+\cos \left(\theta+\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{4 \pi}{3}=0\right)$
You must show each stage of your working.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

7

Given that $\sin x(\cos y+2 \sin y)=\cos x(2 \cos y-\sin y)$, find the value of $\tan (x+y)$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

Split the following into partial fractions:
a) $\frac{3 x^{2}-2 x+1}{2 x^{4}+x}$
b) $\frac{4 x^{3}-12 x^{2}-22 x-3}{7 x-2 x^{2}+4}$

BHASVIC M α 'IHS A1 DOUBLES ASSIGNMENT 11A

9

Show that $\frac{4 x^{3}-6 x^{2}+8 x-5}{2 x+1}$ can be written in the form $A x^{2}+B x+C+\frac{D}{2 x+1}$ where A, B, C and D are constants to be found.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11A

10

Find the area shaded between the line $y=2 x-1$ and the curve $y=3+2 x-x^{2}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

11

(a) Sketch the graph of $y=\frac{3}{x}$, remembering to include the equations of any
asymptotes. Add to this sketch, the line $y=a-3 x$ which is a tangent to the curve $y=\frac{3}{x}$ at the point A, and the line $y=b-$ $3 x$ which is tangent to the curve $y=\frac{3}{x}$ and the point B.
(b) Find the values of a and b

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

12
Use differentiation from first principles to prove that: if $f(x)=3 x^{2}, \quad f^{\prime}(x)=6 x$.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

13
The point $(6,1)$ lies on the circle $x^{2}+y^{2}-8 x-4 y+15=0$.
(a) Find the equation of the normal to the circle at this point
(b) Find the coordinates of the second point at which the normal cuts the circle

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

14

Disproof by Counter Example

E.g. Show that the statement " n 2 $-n+1$ is a prime number for all values of n " is untrue.
Ans. $n=5$ since $5^{2}-5+1=21$ and 21 is not a prime number.
Therefore, the statement is untrue.
a) Prove by counter-example that the product of an odd and even number is never a perfect square.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

15

Complete this old spec paper, https://www.madasmaths.com/archive/iygb practice papers /c1 practice papers/c1 m.pdf

Exclude qs 3 and 7

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

1 - Answers

(a) 1
(b) $\frac{\sqrt{3}}{2}$
(c) $\sqrt{3}$
(d) 1
(e) $\sqrt{2}$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

2-Answers

(a) $\sin 35^{\circ}$
(b) $\sin 35^{\circ}$
(c) $\tan 31^{\circ}$
(d) $\sin 3 \theta$
(e) $\tan 5 \theta$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

3 - Answers

(a) $\pm \frac{1}{20}$
(b) $x=\frac{1}{20}$ Minimum (you need to give a reason)

$$
x=-\frac{1}{20} \text { Maximum }
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

4 - Answers

(a) $(x-5)^{2}+(y-2)^{2}=5$
(b) $(3,3)$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11A

5 - Answers

1.131, 5.152

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

6 - Answers

Write θ as $\left(\theta+\frac{2 \pi}{3}\right)-\frac{2 \pi}{3}$ and $\theta+\frac{4 \pi}{3}$ as $\left(\theta+\frac{2 \pi}{3}\right)+\frac{2 \pi}{3}$
Use the addition formulae for cos and simplify.

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11A
7 - Answers

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11A

8 - Answers

(a) $\frac{1}{x}+\frac{-2 x^{2}+3 x-2}{2 x^{3}+1}$
(b) $-2 x-1-\frac{3}{4-x}+\frac{1}{2 x+1}$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

9 - Answers

$$
A=2, B=-4, C=6, \quad D=-11
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11A

10 - Answers

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 11A

11-Answers
(a) Use desmos
(b) 6 and - 6

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 11A
12-Answers

Proof

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 11A
13-Answers
(a) $x+2 y-8=0$
(b) $(2,3)$

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 11A

14 - Answers

Even number 4
Odd number 9
$4 \times 9=36$

Since 36 is a perfect square, an even number times an odd number can equal a perfect square, therefore the statement is untrue.

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 11A

15 - Answers

https://www.madasmaths.com/archive/ivgb practice pap ers/c1 practice papers/c1 m solutions.pdf

