Lynn is selling cushions as part of an enterprise project. On her first attempt, she sold 80 cushions at the cost of £15 each. She hopes to sell more cushions next time. Her adviser suggests that she can expect to sell 10 more cushions for every £1 that she lowers the price.

(a) the number of cushions sold *c* can be modelled by the equation c = 230 - Hp, where  $\pounds p$  is the price of each cushion and *H* is a constant. Determine the value of *H*.

To model her total revenue,  $\pounds r$ , Lynn multiplies the number of cushions sold by the price of each cushion. She writes this as r = p(230 - Hp).

(b) Rearrange *r* into the form  $A - B(p - C)^2$ , where *A*, *B* and *C* are constants to be found.

(c) Using your answer to part b or otherwise, show that Lynn can increase her revenue by £122.50 through lowering her prices, and state the optimum selling price of a cushion.

2

The graph of  $y = x^4 + bx^3 + cx^2 + dx + e$  is shown where *b*, *c*, *d* and *e* are real constants (a) Find the coordinates of the y intercept

(b) Find the values of *b*, *c*, *d* and *e* 



#### 3

(a) Find the equation of the line l, which goes through the point P(5, 9) and has gradient 2.

(b) The circle C has equation  $(x + 1)^2 + (y - 2)^2 = 5$ . Show that *l* is a tangent to C.

A line is a tangent to a circle if it touches it once only (rather than intersecting it twice or not touching it at all).

(c) Find, as a surd, the length from P to the point where l touches the circle.

#### 4

Evaluate the following definite integrals:

(a)  $\int_{1}^{2} \left( \frac{2}{x^{3}} + 3x \right) dx$ (b)  $\int_0^2 (2x^3 - 4x + 5) dx$ (c)  $\int_4^9 \left(\sqrt{x} - \frac{6}{x^2}\right) dx$ (d)  $\int_{1}^{8} \left( x^{-\frac{1}{3}} + 2x - 1 \right) dx$ (e)  $\int_{1}^{3} \frac{x^3 + 2x^2}{r} dx$ (f)  $\int_{3}^{6} \left(x - \frac{3}{x}\right)^{2} dx$ (g)  $\int_0^1 x^2 \left(\sqrt{x} + \frac{1}{x}\right) dx$ (h)  $\int_{1}^{4} \frac{2+\sqrt{x}}{x^2} dx$ 

#### 5

Solve the following equations on the interval  $0 \le X \le 360$ (a) sin(x + 30) = -0.2

(b)  $\cos(2x) = -0.8$ 

(c)  $\tan\left(\frac{x}{2}\right) = -0.3$ 

6

A cubic graph is defined as

$$f(x) = x^3 + x^2 - 10x + 8$$
,  $x \in \mathbb{R}$ 

(a) By considering the factors of 8, or otherwise, express f(x) as the product of three linear factors

(b) Sketch the graph of f(x)



#### 8

Given that  $\tan\left(x + \frac{\pi}{3}\right) = \frac{1}{2}$ , show that  $\tan x = 8 - 5\sqrt{3}$ .

#### 9

The curve C has the equation  $y = 3 - x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}, x > 0$ .

(a) Find the coordinates of the points where C crosses the x-axis.

(b) Find the exact coordinates of the stationary point of C.

(c) Determine the nature of the stationary point.

(d) Sketch the curve *C*.

#### 10

$$\frac{dy}{dx} = 3x^{-\frac{1}{2}} - 2x\sqrt{x}, x > 0$$

Given that y = 10 at x = 4, find y in terms of x, giving each term in its simplest form.

#### 11

The region *R* is bounded by the curve  $y = x^2 + 2$ , the *x* and *y* axis and the normal to the curve at the point (2,6).

- (a) Sketch the curve  $y = x^2 + 2$
- (b) Find the equation of the normal
- (c) Find the area of R.

#### 12

A rectangular box, with no top, is made from thin card. The volume of the box is  $500 \text{ cm}^3$ . The base of the box is a square with sides of length *x* cm.

(a) Show that the area,  $A \text{ cm}^2$ , of card used to make such an open box is given by  $A = x^2 + \frac{2000}{x}$ .

(b) find the minimum amount of card needed to make this box



#### 13

A quadratic function is defined by  $f(x) = x^2 + kx + 9$  where k is a constant. It is given that the equation f(x) = 0 has two distinct real roots.

(a) Find the set of values *k* can take.

For the case where  $k = 4\sqrt{3}$ 

(b) Express f(x) in the form  $(x + a)^2 + b$  stating the values of a and b, and hence write down the least value taken by f(x)

(c) solve the equation f(x) = 0 expressing your answer in terms of surds simplified as far as possible.

#### 14

For each of the following circles, find the lengths along the tangents from the given point to the circle:

(a)  $(x + 2)^2 + (y - 3)^2 = 3$ (b)  $(x - 2)^2 + (y - 4)^2 = 25$ (c)  $(x + 3)^2 + (y + 5)^2 = 30$ 

from the point (0, 0) from the point (8, 2) from the point (-2, 3)

#### 1 - Answers

(a) H = 10

(b)  $r = 1322.5 - 10(p - 11.5)^2$  A = 1322.5, B = 10, C = 11.5

(c) Old revenue is  $80 \times \pounds 15 = \pounds 1200$ ; new revenue is £1322.50; different is £122.50. The best selling price of a cushion is £11.50.

2 - Answers

(a) (0,12)
(b) b= 1, c= -13, d= -1, e= 12

#### 3 - Answers

(a) 2x - y - 1 = 0

(c)  $4\sqrt{5}$ 

#### 4–Answers

| (a) $5\frac{1}{4}$  |  |               |
|---------------------|--|---------------|
| (b) 10              |  |               |
| (c) $11\frac{5}{6}$ |  |               |
| (d) $60\frac{1}{2}$ |  | AP T(         |
| (e) $16\frac{2}{3}$ |  | TAP TO RETURN |
| (f) $46\frac{1}{2}$ |  | URN           |
| $(g)\frac{11}{14}$  |  |               |
| (h) $2\frac{1}{2}$  |  |               |
|                     |  |               |

#### 5-Answers

(a) 161.5, 318.5

(b) 71.6, 108.4, 251.6, 288.4

(c) 326.6

#### 6 - Answers

(a) (x-2)(x-1)(x+4)

#### 7 - Answers



8 - Answers

$$\frac{\tan x + \sqrt{3}}{1 - \sqrt{3} \tan x} = \frac{1}{2} \Rightarrow \left(2 + \sqrt{3}\right) \tan x = 1 - 2\sqrt{3}, \text{ so}$$
$$\tan x = \frac{1 - 2\sqrt{3}}{2 + \sqrt{3}} = \frac{(1 - 2\sqrt{3})(2 - \sqrt{3})}{1} = 8 - 5\sqrt{3}$$

#### 9 - Answers

- (a) (1, 0) and (4,0)
- (b)  $(2, 3 2\sqrt{2})$
- (c) maximum (need to give a reason)



#### 10 - Answers



#### 11 - Answers

(b) x + 4y - 26 = 0

 $(c)\frac{236}{3}$ 

#### 12 - Answers

(b) 300cm<sup>2</sup>

#### 13 - Answers

k < -6 or k > 6 (you must include a sketch)

 $a = -2\sqrt{3}, b = -3$  hence least value is -3

 $-\sqrt{3}, -3\sqrt{3}$ 

#### 14 - Answers

