BHASVIC MaTHS

A2 Doubles summer CWC

Section: Core

1. $\mathrm{f}(x)=2 x^{3}-8 x^{2}+7 x-3$.

Given that $x=3$ is a solution of the equation $\mathrm{f}(x)=0$, solve $\mathrm{f}(x)=0$ completely.
2. Given that $z_{1}=3+2 \mathrm{i}$ and $z_{2}=\frac{12-5 \mathrm{i}}{z_{1}}$,
(a) find z_{2} in the form $a+\mathrm{i} b$, where a and b are real.
(b) Show, on an Argand diagram, the point P representing z_{1} and the point Q representing z_{2}.
(c) Given that O is the origin, show that $\angle P O Q=\frac{\pi}{2}$.

The circle passing through the points O, P and Q has centre C. Find
(d) the complex number represented by C,
(e) the exact value of the radius of the circle.
3. $\mathrm{f}(x)=\left(x^{2}+4\right)\left(x^{2}+8 x+25\right)$
(a) Find the four roots of $\mathrm{f}(x)=0$.
(b) Find the sum of these four roots.
4. The complex numbers z_{1} and z_{2} are given by $z_{1}=2-\mathrm{i}$ and $z_{2}=-8+9 \mathrm{i}$
(a) Show Z_{1} and z_{2} on a single Argand diagram.

Find, showing your working,
(b) the value of $\left|z_{1}\right|$,
(c) the value of arg z_{1}, giving your answer in radians to 2 decimal places,
(d) $\frac{z_{2}}{z_{1}}$ in the form $a+b$ i, where a and b are real.
5. $z=5 \sqrt{ } 3-5 i$
Find
(a) $|z|$,
(b) $\quad \arg (z)$, in terms of π.
$w=2\left(\cos \frac{\pi}{4}+\mathrm{i} \sin \frac{\pi}{4}\right)$

Find
(c) $\left|\frac{w}{z}\right|$,
(d) $\quad \arg \left|\frac{w}{z}\right|$, in terms of π.
6. The point P represents a complex number z on an Argand diagram, where $|z+1|=|z-i|$ and the point Q represents a complex number w on the Argand diagram, where $|w|=|w-1+\mathrm{i}|$ Find the exact coordinates of the points where the locus of P intersects the locus of Q.
7. Use standard series to evaluate

$$
\sum_{r=1}^{25}(5 r-1)
$$

8. (a) Use standard results to show that

$$
\sum_{r=1}^{n}(4 r+1)(4 r-1)=\frac{1}{3} n(4 n+1)(4 n+5)
$$

for all positive integers n.
(b) Hence evaluate the sum

$$
\sum_{r=9}^{28}(4 r+1)(4 r-1)
$$

9. (a) Use standard results to find an expression for

$$
\sum_{r=1}^{n} r(3 r-1)
$$

Factorise your answer as far as possible.
(b) \quad Hence, show that for any integer $N>1$,

$$
\sum_{r=1}^{N^{2}-1} r(3 r-1)
$$

is a perfect square.
10. Prove that

$$
\sum_{r=1}^{n} 6\left(r^{2}-1\right) \equiv(n-1) n(2 n+5)
$$

11. Prove that

$$
\sum_{r=1}^{n}(r-1)(r+2) \equiv \frac{1}{3}(n-1) n(n+4)
$$

12. (a) Simplify $(r+2)^{2}-r^{2}$
(b) Hence, using the method of differences, show that

$$
\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)
$$

13. (a) Show that $\frac{1}{r^{2}}-\frac{1}{(r+1)^{2}} \equiv \frac{2 r+1}{r^{2}(r+1)^{2}}$
(b) Hence find an expression for

$$
\sum_{r=1}^{n} \frac{2 r+1}{r^{2}(r+1)^{2}}
$$

in the form $A+\frac{B}{(n+1)^{2}}$ for constants A and B to be stated.
(c) Evaluate the series

$$
\sum_{r=4}^{19} \frac{2 r+1}{r^{2}(r+1)^{2}}
$$

(d) Show that

$$
\sum_{r=n}^{2 n-1} \frac{2 r+1}{r^{2}(r+1)^{2}}=\frac{3}{4 n^{2}}
$$

for all positive integers n.
14. (a) Show that $\frac{1}{r}-\frac{1}{r+1}+4=\frac{(2 r+1)^{2}}{r(r+1)}$ for all $r>0$.
(b) Hence find, in terms of the positive integer n, and expression for

$$
\sum_{r=1}^{n} \frac{(2 r+1)^{2}}{r(r+1)}
$$

factorising your answer as far as possible.
(c) Evaluate the series

$$
\sum_{r=r}^{14} \frac{(2 r+1)^{2}}{r(r+1)}
$$

15. (a) Express $\frac{2}{r\left(r^{2}-1\right)}$ in the form $\frac{A}{(r+1)}+\frac{B}{r}+\frac{C}{(r-1)}$ for constants A, B and C.
(b) Hence show that

$$
\sum_{r=2}^{n} \frac{4}{r\left(r^{2}-1\right)}=\frac{(n-1)(n+2)}{n(n+1)}
$$

16. Find $\frac{d y}{d x}$:
(a) $y=x^{7}\left(2-5 x^{3}\right)^{4}$
(b) $y=x^{2} \sqrt{3-4 x}$
(c) $y=\frac{(5 x+1)^{3}}{\sqrt{x}}$
(d) $y=\left(x^{2}-3 x+1\right)^{5}(2 x-3)^{3}$
(e) $y=\sqrt{\frac{x^{2}+1}{x^{3}-3}}$
(f) $y=\frac{x(x-1)^{3}}{x-3}$
(g) $y=\frac{x \sqrt{5-x^{2}}}{6-x}$
17. Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is:
a) $\frac{x^{2}}{\tan x}$
b) $\frac{1+\sin x}{\cos x}$
c) $\mathrm{e}^{2 x} \cos x$
d) $\mathrm{e}^{x} \sec 3 x$
e) $\frac{\sin 3 x}{\mathrm{e}^{x}}$
f) $\mathrm{e}^{x} \sin ^{2} x$
g) $\frac{\ln x}{\tan x}$
h) $\frac{e^{\sin x}}{\cos x}$
18. (a) Differentiate with respect to x,
(i) $\mathrm{e}^{3 x}(\sin x+2 \cos x)$,
(ii) $x^{3} \ln (5 x+2)$.

Given that $y=\frac{3 x^{2}+6 x-7}{(x+1)^{2}}, x \neq 1$,
(b) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{20}{(x+1)^{3}}$.
(c) Hence find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and the real values of x for which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{15}{4}$.
19. Find the equation of the normal to the curve $y=\frac{1}{1+2 \sin x}$ at the point where $x=\frac{\pi}{6}$.
20. A curve has equation $f(x)=\frac{x+1}{\sqrt{x-1}}$. Find $f^{\prime}(x)$ and hence find the coordinates of the turning point of the curve. Determine whether the turning point is a maximum or a minimum point.
21. (a) Express $\frac{2}{4-y^{2}}$ in partial fractions.
(b) Hence obtain the solution of $2 \cot x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(4-y^{2}\right)$
for which $y=0$ at $x=\frac{\pi}{3}$, giving your answer in the form $\sec ^{2} x=\mathrm{g}(y)$.
22. During a chemical reaction, a compound is being made from two other substances.

At time t hours after the start of the reaction, $x \mathrm{~g}$ of the compound has been produced.
Assuming that $x=0$ initially, and that $\quad \frac{d x}{d t}=2(x-6)(x-3)$
(a) Show that it takes approximately 7 minutes to produce 2 g of the compound.
(b) Explain why it is not possible to produce 3 g of the compound.
23. Liquid is pouring into a container at a constant rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of the liquid already in the container.
a) Write a differential equation to model this situation
b) The container is initially empty. Solve the differential equation, giving your answer in terms of k
c) Given that $\frac{d V}{d t}=10$ when $t=5$, find the volume in the container at 10
seconds after the start
24. In a certain pond, the rate of increase of the number of fish is proportional to the number of fish, n , present at time t.
a) Assuming that n can be regarded as a continuous variable, write down a differential equation relating n and t , and hence show that $\mathrm{n}=\mathrm{Ae}^{\mathrm{kt}}$
b) In a revised model, it is assumed also that fish are removed from the pond, by anglers and by natural wastage, at the constant rate of p per unit time, so that

$$
\frac{d n}{d t}=k n-p
$$

Given that $\mathrm{k}=2, \mathrm{p}=100$ and that initially there were 500 fish in the pond, solve this differential equation, expressing n in terms of t
c) Give a reason why this revised model is not satisfactory for large values of t
25. An approximate rule used by builders to find the length, c , of a circular arc ABC is $c=\frac{8 b-a}{3}$, where a and b are as shown in the diagram.

(a) If O is the centre of the circle, show that $b=2 r \sin \left(\frac{\theta}{2}\right)$ and $a=2 r \sin \theta$.
(b) Using the cubic approximation to $\sin x$, show that $8 b-a=6 r \theta$. Hence verify the rule.
(c) Find the percentage error caused by using this rule when $\theta=\frac{\pi}{3}$.
26. (a) Write down the Maclaurin expansions of
(i) $\cos \theta$
(ii) $\sin \theta$
(iii) $\cos \theta+i \sin \theta$
giving your answers in ascending powers of θ.
(b) Substitute $x=i \theta$ in the Maclaurin series for e^{x} and simplify the terms.
(c) Show that your answers to (a)(iii) and (b) are the same, and hence

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

27. (a) Write down the first four non-zero terms in Maclaurin series for $\cos u$.
(b) Substitute $u=2 x$ in this series to obtain the first four non-zero terms in the Maclaurin series for $\cos 2 x$.
28. (a) Given that $f(x)=e^{2 x} \sin 3 x$, show that $f^{\prime \prime}(x)=4 f^{\prime}(x)-13 f(x)$.
(b) Differentiate this result twice to find expressions for $f^{(3)}(x)$ and $f^{(4)}(x)$ in terms of lower derivatives.
(c) Hence find the Maclaurin expansion for $f(x)$ up to the term in x^{4}.
