BHASVIC MaTHS

A2 Doubles summer assignment 3

Section: Core

Past

1. Write $\frac{3-5 i}{2 i-1}$ in the form $\mathrm{a}+\mathrm{bi}$
2. Solve the simultaneous equations:

$$
(1-\mathrm{i}) \mathrm{z}+2 \mathrm{iw}=\mathrm{i}
$$

$$
(1+i) z+(1-i) w=1
$$

3. Solve the equation $2 \mathrm{iz}+1=4 \mathrm{i}(\mathrm{z}-3)$
4. Solve the equation $2 z+i z^{*}=-3-i$
5. Solve the following equations, giving their roots in the form a + bi (where either a or b may be zero).
(a) $x^{2}+4 x+20=0$
(b) $x^{2}+4 x+7=0$
(c) $x^{2}+25=0$
(d) $x^{2}+2 i x-2=0$
(e) $x^{2}+2 i x+2=0$
6. On an Argand diagram, sketch the locus of points where $|z-3 \mathrm{i}|=|z+6|$
7. Shade the region on an Argand diagram where $\frac{\pi}{6}<\arg (z)<\frac{2 \pi}{3}$.
8. a) On the same diagram, sketch the locus of $|z+1|=|z-3|$ and $\arg (z)=\frac{\pi}{4}$.
b) Hence, find the complex number z that satisfies both equations.

Present

1. Find $\sum_{r=1}^{n}\left(2 r^{3}+r\right)$
2. (a) Write $\frac{2}{r(r+2)}$ in the form $\frac{A}{r}+\frac{B}{r+2}$
(b) Hence find $\sum_{r=1}^{n} \frac{2}{r(r+2)}$
3. (a) Find $\sum_{r=1}^{n} r(r+1)(r+2)$
(b) Hence find $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\cdots+100 \times 101 \times 102$.
4. (a) Show that $\frac{1}{3}(r+1)(r+2)(r+3)-\frac{1}{3} r(r+1)(r+2)=(r+1)(r+2)$.
(b) using the result from (a) and the method of differences,

$$
\text { find } \sum_{r=1}^{n}(r+1)(r+2)
$$

(c) Use standard results to find $\sum_{r=1}^{n}(r+1)(r+2)$ and show that this is the same as the result from (b).
5. (a) Find $\sum_{r=1}^{n} \frac{7 r+10}{r(r+1)(r+2)}$
(b) Hence find $\sum_{r=1}^{\infty} \frac{7 r+10}{r(r+1)(r+2)}$

Future

1. $\quad z$ is a complex number satisfying $|z-2-2 i|=2$. Find the maximum possible value of $\arg (z)$.
