BHASVIC Maths

A2 Doubles summer assignment 2

Section: Core

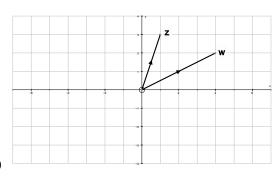
Past

1. Solve these quadratic equations and represent the solutions on an Argand diagram:

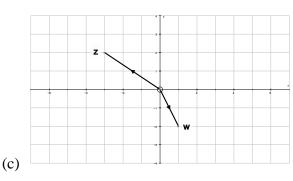
(b)
$$z^2 - 10z + 26 = 0$$

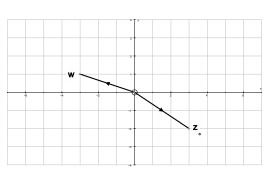
(a) $z^2 - 4z + 13 = 0$ (b) $z^2 - 10z + 26 = 0$ (c) $z^2 + 2z + 17 = 0$ (d) $z^2 + 6z + 13 = 0$

Each diagram shows two complex numbers, z and w. Copy each diagram and add the complex 2. numbers corresponding to z^* , -w, and z + w



(a)





Write each complex number in the form $r(\cos\theta + i\sin\theta)$ where $-\pi < \theta \ll \pi$ 3.

(a) z = 4i

(b) z = -5 (c) $z = 2 - 2\sqrt{3}i$ (d) $z = \frac{\sqrt{3}+i}{2}$

Find the modulus and argument of the following: 4.

(a) $z = 4(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right))$ (b) $z = 3(\cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right))$

(c) $z = -10(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right))$ (d) $z = 6(\cos\left(-\frac{\pi}{10}\right) + i\sin\left(\frac{\pi}{10}\right))$

5. (a) If
$$z = 3(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$
 and $w = 5(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$ write zw in the form $r(\cos\theta + i\sin\theta)$ where $-\pi < \theta \ll \pi$

(b) If
$$z = 6(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}))$$
 and $w = 3(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$ write $\frac{z}{w}$ in the form $x + iy$

6. If
$$z = 1 + i$$
, write down the complex conjugate z^* , and express $\frac{z}{z^*}$ in the form $a + bi$.

7. If
$$z = \frac{1}{2-3i}$$
, express z in the form $a + bi$, write down z^* and hence evaluate zz^* .

8. Find, in the form
$$a + bi$$
 with $b > 0$, the complex number z satisfying simultaneously the equations $zz^* = 25$, $z + z^* = 6$

Present

1. Illustrate each locus on an Argand diagram (shade the areas the inequalities cover).

a) i)
$$|z - 2i| = 5$$

ii)
$$|z - 3| = 5$$

b) i)
$$|z + 4| = 1$$

ii)
$$|z + 3i| = 2$$

c) i)
$$|z - i| \le 2$$

ii)
$$|z + i| > 3$$

a) i)
$$|z - 2i| = 5$$

b) i) $|z + 4| = 1$
c) i) $|z - i| \le 2$
d) i) $|z - 3 + i| > 2$
ii) $|z - 3| = 5$
ii) $|z + 3i| = 2$
ii) $|z + i| > 3$
ii) $|z + 1 - 2i| \le 1$

ii)
$$|z + 1 - 2i| \le 1$$

2. The set of points from question 1 a i can be described as $\{x + iy: x^2 + (y - 2)^2 = 25\}$. Write the sets of points for the rest of question 1 using similar notation.

a) ii)
$$|z - 3| = 5$$

b) i)
$$|7 + 4| = 1$$

$$|ii| |z + 3i| - 3$$

c) i)
$$|z - i| \le 2$$

ii)
$$|z + i| > 3$$

$$\begin{array}{lll} \text{b)} & \text{i)} \ |z+4| = 1 & & \text{ii)} \ |z+3i| = 2 \\ \text{c)} & \text{i)} \ |z-i| \leq 2 & & \text{ii)} \ |z+i| > 3 \\ \text{d)} & \text{i)} \ |z-3+i| > 2 & & \text{ii)} \ |z+1-2i| \leq 1 \end{array}$$

ii)
$$|z + 1 - 2i| \le 1$$

3. Sketch each locus on an Argand diagram.

a) i)
$$|z - 2| = |z + 2i|$$

ii)
$$|z + 1| = |z - i|$$

b) i)
$$|z - 3i| < |z + i|$$

ii)
$$|z + 2| > |z - 3|$$

c) i)
$$Re(z) = 5$$

ii)
$$Im(z) > -2$$

4. Sketch each locus on an Argand diagram.

a) i)
$$arg(z) = \frac{\pi}{2}$$

ii)
$$arg(z) = \frac{\pi}{4}$$

b) i)
$$arg(z) = -\frac{\pi}{6}$$

ii)
$$arg(z) = -\frac{3\pi}{4}$$

Sketch each locus on an Argand diagram.

a) i)
$$arg(z) = \frac{\pi}{3}$$
 ii) $arg(z) = \frac{\pi}{4}$

b) i) $arg(z) = -\frac{\pi}{6}$ ii) $arg(z) = -\frac{3\pi}{4}$

c) i) $arg(z) = \frac{\pi}{2}$ ii) $arg(z) = \frac{\pi}{4}$

ii)
$$arg(z) = \pi$$

5. Shade the region on an Argand diagram where $1 < |z - 3i| \le 3$.

<u>Future</u>

- 1. The roots of the equations $z^2 + 4z + 29 = 0$ are z_1 and z_2 . Show that $|z_1| = |z_2|$ and calculate in degrees the argument of z_1 and the argument of z_2 .
 - In an Argand diagram, O is the origin and z_1 and z_2 are represented by the points P and Q. Calculate the radius of the circle passing through the points O, P and Q.