BHASVIC MaTHS

A2 Doubles summer assignment 1

Section: Core

Present

1. Find the following:
(a) $(6+4 \mathrm{i})-(3-5 \mathrm{i})$
(b) $3(6+4 \mathrm{i})+2(3-5 \mathrm{i})$
(c) $3 \mathrm{i}(6+4 \mathrm{i})+2 \mathrm{i}(3-5 \mathrm{i})$
(d) $(6+4 i)^{2}$
(e) $(6+4 \mathrm{i})(3-5 \mathrm{i})$
(f) $(6+4 i)(6-4 i)$
(g) $(6+4 \mathrm{i})(6-4 \mathrm{i})(3-5 \mathrm{i})(3+5 \mathrm{i})$
(h) $(3-7 i)^{3}$
(i) $(2+2 \mathrm{i})(3-7 \mathrm{i})(5-\mathrm{i})$
2. Find real numbers a and b such that:
(a) $(a+b i)(3-2 i)=5 i+1$
(b) $(6+i)(a+b i)=2$
(c) $(\mathrm{a}+2 \mathrm{i})(1+2 \mathrm{i})=4-\mathrm{bi}$
(d) $(1+a \mathrm{a})(1+\mathrm{i})=\mathrm{b}+2 \mathrm{i}$
(e) $(a+b i)(2+i)=2 a-(b-1) i$
(f) $\mathrm{i}(\mathrm{a}+\mathrm{bi})=\mathrm{a}-6 \mathrm{i}$
3. By writing $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, solve these equations:
(a) $\mathrm{z}^{2}=-4 \mathrm{i}$
(b) $\mathrm{z}^{2}=9 \mathrm{i}$
(c) $\mathrm{z}^{2}=2+2 \sqrt{3} \mathrm{i}$
(d) $\mathrm{z}^{2}=5+\mathrm{i}$
4. Write the following in the form $\mathrm{x}+\mathrm{iy}$
(a) $\frac{3-2 i}{1+2 i}$
(b) $\frac{4 i}{3-5 i}$
(c) $\frac{4+i}{4-i}$
(d) $\frac{2 i+1}{2 i-1}$
(e) $\frac{(1+i)^{2}}{1-i}$
(f) $\frac{(i-2)^{2}}{i+2}$
5. Solve these equations:
(a) $(1+i) z=3+i$
(b) $(2-\mathrm{i}) \mathrm{z}+(2-6 \mathrm{i})=4-7 \mathrm{i}$
(c) $(3-4 \mathrm{i})(\mathrm{z}-1)=10-5 \mathrm{i}$
(d) $(3+5 \mathrm{i})(\mathrm{z}+2-5 \mathrm{i})=6+3 \mathrm{i}$
6. Find the values of a and b such that $\frac{a}{3+i}+\frac{b}{1+2 i}=1-i \quad$ where a and b are real numbers.
7. Solve these simultaneous equations:

$$
\begin{aligned}
& (1+i) z+(2-i) w=3+4 i \\
& i z+(3+i) w=-1+5 i
\end{aligned}
$$

8. Given that $2+3 \mathrm{i}$ is one of the roots of a quadratic equation with real coefficients, find the quadratic equation.
9. Find the complex number Z such that $3 z+2 z^{*}=5+2 i$
10. Solve the simultaneous equations:
$2 \mathrm{z}-3 \mathrm{iw}=5$
$(1+\mathrm{i}) \mathrm{z}+3 \mathrm{w}=-4 \mathrm{i}$
11. Solve the equation $2 z-3=4-3(i+z)$
12. Solve the equation $z+2 z^{*}=2-7 i$
13. If $a=1+i, b=2-i, c=2+3 i$, express the following in the form $\mathrm{x}+\mathrm{iy}$:
(i) $a+b$
(ii) $a+2 b-c$
(iii) $a b$
(iv) $a^{2} c$
(v) $(a+b) c^{2}$
(vi) $a^{2}+b^{2}$

Future

1. Given that $\alpha=2+\mathrm{i}$ is one of the roots of a quadratic equation with real coefficients,
(a) state the value of the other root β
(b) find the quadratic equation
(c) find the values of $\alpha+\beta$ and $\alpha \beta$ and interpret the results
