Parametric equations

Standard topics/ various/parametric equations exam questions

Question 27 (***+)

A curve has parametric equations

$$x = t^2$$
, $y = \frac{6}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

- a) Determine a simplified expression for $\frac{dy}{dx}$, in terms of t.
- **b)** Show that an equation of the tangent to the curve at the point A(4,-3) is

$$3x-8y-36=0$$
.

c) Find the value of t at the point where the tangent to the curve at A meets the curve again.

$$\left[\frac{dy}{dx} = -\frac{3}{t^3}\right], \ [t=4]$$

Question 31 (***+)

A curve is given parametrically by the equations

$$x = 3t - 2\sin t$$
, $y = t^2 + t\cos t$, $0 \le t < 2\pi$.

Show that an equation of the tangent at the point on the curve where $t = \frac{\pi}{2}$ is given by

$$y = \frac{\pi}{6} (x+2).$$

Question 34 (***+)

The curve C has parametric equations

$$x = \cos \theta$$
, $y = \sin 2\theta$, $0 \le \theta < 2\pi$.

The point *P* lies on *C* where $\theta = \frac{\pi}{6}$.

- a) Find the gradient at P.
- **b**) Hence show that the equation of the tangent at P is

$$2y + 4x = 3\sqrt{3}$$
.

c) Show that a Cartesian equation of C is

$$y^2 = 4x^2 \left(1 - x^2 \right).$$

$$\left| \frac{dy}{dx} \right|_P = -2$$

Parametric Integration

Standard topics/integration/ parametric integration exam questions

Question 5 (***)

The figure above shows the curve C, given parametrically by

$$x = 6t^2$$
, $y = t - t^2$, $t \ge 0$.

The curve meets the x axis at the origin O and at the point P.

a) Show that the x coordinate of P is 6.

The finite region R, bounded by C and the x axis, is revolved in the x axis by 2π radians to form a solid of revolution, whose volume is denoted by V.

b) Show clearly that

$$V = \pi \int_0^T 12t \left(t - t^2\right)^2 dt,$$

stating the value of T.

c) Hence find the value of V.

$$T=1$$
, $V=\frac{\pi}{5}$

Question 7 (***)

The figure above shows the curve $\,C$, given parametrically by

$$x = 3t + \sin t$$
, $y = 2\sin t$, $0 \le t \le \pi$.

The curve meets the coordinate axes at the point P and at the origin O.

The finite region R is bounded by C and the x axis.

Determine the area of R.

, area = 12

Question 8 (***+)

The figure above shows the curve $\,C$, with parametric equations

$$x = 36t^2 - \pi^2$$
, $y = \frac{\sin 3t}{8}$, $\frac{\pi}{6} \le t \le \frac{\pi}{3}$.

The curve meets the coordinate axes at the points A and B.

By setting up and evaluating a suitable integral in parametric, show that the area bounded by C and the coordinate axes is $(\pi - 1)$ square units.

, proof

Question 16 (****)

The figure above shows the curve C, with parametric equations

$$x = 4\cos\theta$$
, $y = \sin\theta$, $0 \le \theta \le \frac{\pi}{2}$.

The curve meets the coordinate axes at the points A and B. The straight line with equation $y = \frac{1}{2}$ meets C at the point P.

a) Show that the area under the arc of the curve between A and P, and the x axis, is given by the integral

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4\sin^2\theta \ d\theta.$$

The shaded region R is bounded by C, the straight line with equation $y = \frac{1}{2}$ and the y axis.

b) Find an exact value for the area of R.

$$area = \frac{1}{6} \left(4\pi - 3\sqrt{3} \right)$$

Question 19 (****)

The figure above shows the curve \mathcal{C} , defined by the parametric equations

$$x = \tan \theta$$
, $y = \cos^2 \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

The finite region R is bounded by C, the coordinate axes and the straight line with equation x=1.

a) Determine the area of R.

The region R is revolved by 2π radians in the x axis, forming a solid S.

b) Show that the volume of S is

$$\frac{\pi}{8}(\pi+2)$$
.

c) Find a Cartesian equation of C, giving the answer in the form y = f(x).

, area =
$$\frac{\pi}{4}$$
, $y = \frac{1}{1+x^2}$

Volumes of Revolution

Standard topics/integration/integration volume of revolution

Question 11 (***)

The curve C has equation

$$y = \sqrt{x} + \frac{4}{\sqrt{x}}, \ x > 0.$$

The region bounded by C, the x axis and the lines x = 1, x = 4 is rotated through 360° about the x axis.

Show that the volume of the solid formed is

$$\frac{\pi}{2}$$
 (63+64ln 2).

Question 25 (***+)

The curve C lies entirely above the x axis and has equation

$$y = 1 + \frac{1}{2\sqrt{x}}, \ x \ge 0.$$

a) Show that

$$y^2 = 1 + \frac{1}{\sqrt{x}} + \frac{1}{4x}.$$

The region R is bounded by the curve, the x axis and the straight lines with equations x = 1 and x = 4.

b) Show that when R is rotated by 360° about the x axis, the solid generated has a volume

$$\pi \left(5+\ln \sqrt{2}\right)$$
.

Differential Equations

Standard topics/odes separable no context

Question 3 (**+)

Find a general solution of the differential equation

$$\frac{dy}{dx} = (y+1)(1-2x), y \neq -1.$$

giving the answer in the form y = f(x).

$$y = A e^{x - x^2} - 1$$

Question 4 (**+)

Find a general solution of the differential equation

$$\frac{dy}{dx} = y \tan x, y > 0$$

giving the answer in the form y = f(x).

 $y = A \sec x$

Question 7 (***+)

Find a general solution of the differential equation

$$\left(x^2+3\right)\frac{dy}{dx} = xy, \ y > 0,$$

giving the answer in the form $y^2 = f(x)$.

$$y^2 = A(x^2 + 3)$$

Question 9 (***+)

Find a general solution of the differential equation

$$\frac{dy}{dx} = \frac{xe^x}{\sin y \cos y},$$

giving the answer in the form f(x, y) = constant.

$$\cos 2y + 4e^{x}(x-1) = C$$
 or $e^{x}(x-1) - \sin^{2} y = C$ or $e^{x}(x-1) + \cos^{2} y = C$

Standard topics/integration/odes context modelling

Question 6 (***)

The mass, m grams, of a burning candle, t hours after it was lit up, satisfies the differential equation

$$\frac{dm}{dt} = -k \left(m - 10 \right),\,$$

where k is a positive constant.

a) Solve the differential equation to show that

$$m = 10 + Ae^{-kt},$$

where A is a non-zero constant.

The initial mass of the candle was 120 grams, and 3 hours later its mass has halved.

b) Find the value of A and show further that

$$k = \frac{1}{3} \ln \left(\frac{11}{5} \right).$$

c) Calculate, correct to three significant figures, the mass of the candle after a further period of 3 hours has elapsed.

$$A = 110$$
, $m \approx 32.7$

Question 8 (***)

The number of fish x in a small lake at time t months after a certain instant, is modelled by the differential equation

$$\frac{dx}{dt} = x \left(1 - kt \right),\,$$

where k is a positive constant.

We may assume that x can be treated as a continuous variable.

It is estimated that there are 10000 fish in the lake when t = 0 and 12 months later the number of fish returns back to 10000.

- a) Find a solution of the differential equation, in the form x = f(t).
- **b**) Find the long term prospects for this population of fish.

$$x = 10000 e^{t - \frac{1}{12}t^2}, \ x \to 0$$

Question 10 (***+)

A cylindrical tank of height 150 cm is full of oil which started leaking out from a small hole at the side of a tank.

Let h cm be the height of the oil still left in the tank, after leaking for t minutes, and assume the leaking can be modelled by the differential equation

$$\frac{dh}{dt} = -\frac{1}{4}(h-6)^{\frac{3}{2}}.$$

a) Solve the differential equation to show that ...

i. ...
$$t = \frac{8}{\sqrt{h-6}} - \frac{2}{3}$$
.

ii. ...
$$\sqrt{h-6} = \frac{24}{3t+2}$$
.

b) State how high is the hole from the bottom of the tank and hence show further that it takes 200 seconds for the oil level to reach 4 cm above the level of the hole.

6cm

Question 11 (***+)

Water is leaking out of a hole at the side of a tank.

Let the height of the water in the tank is y cm at time t minutes.

The rate at which the height of the water in the tank is decreasing is modelled by the differential equation

$$\frac{dy}{dt} = -6\left(y - 7\right)^{\frac{2}{3}}.$$

When t = 0, y = 132.

a) Find how long it takes for the water level to drop from 132 cm to 34 cm.

The tank is filled up with water again to a height of 132 cm and allowed to leak out in exactly the same fashion as the one described in part (a).

b) Determine how long it takes for the water to stop leaking.

$$t = 1$$
, $t = 2.5$

Trapezium rule

Standard topics/integration/Numerical integration

Question 3 (**)

The values of y, for the curve C with equation $y = \sqrt{x^3 - x}$, have been tabulated below.

Х	1	1.5	2	2.5	3	3.5	4
у	0	1.369	2.449	3.623			7.746

- a) Complete the table.
- **b)** Use the trapezium rule with all the values from the table to find an estimate, correct to 2 decimal places, for the integral

$$\int_1^4 \sqrt{x^3 - x} \ dx.$$