C4 Practice Paper 5

- The paper is $1 \frac{1}{2}$ hours long.
- You are advised to show all your working.
- Calculators may be used.

1. The curve C has equation

$$
x^{2}+4 y^{2}-4 x-12 y-12=0
$$

a) By differentiation find the gradient of C at the point $(6,3)$
b) Find an equation of the tangent to the curve C at the point $(6,3)$
2. A curve, C, is given by

$$
x=2 t+3, \quad y=t^{3}-4 t
$$

where t is a parameter. The point A has parameter $t=-1$ and the line l is the tangent to C at A. The line l also intersects the curve at B.
a) Show that an equation for l is $2 y+x=7$
b) Find the value of t at B.
3. a) Find $\int x \sin 2 x d x$.
b) Given that $y=0$ at $x=\frac{\pi}{4}$, solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} x}=x \sin 2 x \cos ^{2} y
$$

4. $\mathrm{f}(x) \equiv \frac{5+x}{(1+2 x)(1-x)^{2}}$
a) Express $\mathrm{f}(x)$ in partial fractions.
b) Given that $|x|<\frac{1}{2}$, expand $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{3}.
5. With respect to an origin O, the position vectors of the points L and M are $\mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $2 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ respectively.
a) Write down the vector $\overrightarrow{L M}$
b) Show that $|\overrightarrow{O L}|=\overrightarrow{L M}$.
c) Find $\angle O L M$, giving your answer to the nearest tenth of a degree.
6. a) Obtain the first four non-zero terms of the binomial expansion in ascending powers of x of $\left(1-x^{2}\right)^{-\frac{1}{2}}$, given that $|x|<1$.
b) Show that, when $x=\frac{1}{3},\left(1-x^{2}\right)^{-\frac{1}{2}}=\frac{3}{4} \sqrt{ }$.
c) Substitute $x=\frac{1}{3}$ into your expansion and hence obtain an approximation to $\sqrt{ } 2$, giving your answer to 5 decimal places.
7. a) Use the identities for $\cos (A+B)$ and $\cos (A-B)$ to prove that
i) $2 \cos A \cos B \equiv \cos (A+B)+\cos (A-B)$.
ii) $\cos ^{2} A \equiv \frac{1}{2}(1+\cos 2 A)$.
b) Find $\int \cos 3 x \cos x d x$
c) Use the substitution $x=\cos t$ to evaluate

$$
\int_{0}^{\frac{1}{2}} \frac{x^{2}}{\left(1-x^{2}\right)^{\frac{1}{2}}} d x
$$

