Core Mathematics C3

Advanced Level

Thursday 16 June 2011 - Afternoon
 Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)
Items included with question papers Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
There are 8 questions in this question paper. The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. Differentiate with respect to x
(a) $\ln \left(x^{2}+3 x+5\right)$,
(b) $\frac{\cos x}{x^{2}}$.
2.

$$
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leq x<2 \pi
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$.

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.
3.

Figure 1

Figure 1 shows part of the graph of $y=\mathrm{f}(x), x \in \mathbb{R}$.
The graph consists of two line segments that meet at the point $R(4,-3)$, as shown in Figure 1.
Sketch, on separate diagrams, the graphs of
(a) $y=2 \mathrm{f}(x+4)$,
(b) $y=|\mathrm{f}(-x)|$.

On each diagram, show the coordinates of the point corresponding to R.
4. The function f is defined by

$$
\mathrm{f}: x \mapsto 4-\ln (x+2), \quad x \in \mathbb{R}, \quad x \geq-1 .
$$

(a) Find $\mathrm{f}^{-1}(x)$.
(b) Find the domain of f^{-1}.

The function g is defined by

$$
\mathrm{g}: x \mapsto \mathrm{e}^{x^{2}}-2, \quad x \in \mathbb{R}
$$

(c) Find $\operatorname{fg}(x)$, giving your answer in its simplest form.
(d) Find the range of fg.
5. The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p \mathrm{e}^{-k t}
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that $k=\frac{1}{4} \ln 3$.
(c) Find the value of t when $\frac{\mathrm{d} m}{\mathrm{~d} t}=-06 \ln 3$.
6. (a) Prove that

$$
\begin{equation*}
\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}=\tan \theta, \quad \theta \neq 90 n^{\circ}, \quad n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise,
(i) show that $\tan 15^{\circ}=2-\sqrt{ } 3$,
(ii) solve, for $0<x<360^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec} 4 x-\cot 4 x=1 \tag{5}
\end{equation*}
$$

7. $\mathrm{f}(x)=\frac{4 x-5}{(2 x+1)(x-3)}-\frac{2 x}{x^{2}-9}, \quad x \neq \pm 3, x \neq-\frac{1}{2}$.
(a) Show that

$$
\begin{equation*}
\mathrm{f}(x)=\frac{5}{(2 x+1)(x-3)} \tag{5}
\end{equation*}
$$

The curve C has equation $y=\mathrm{f}(x)$. The point $P\left(-1,-\frac{5}{2}\right)$ lies on C.
(b) Find an equation of the normal to C at P.
8. (a) Express $2 \cos 3 x-3 \sin 3 x$ in the form $R \cos (3 x+\alpha)$, where R and α are constants, $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your answers to 3 significant figures.

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{e}^{2 x} \cos 3 x \tag{4}
\end{equation*}
$$

(b) Show that $\mathrm{f}^{\prime}(x)$ can be written in the form

$$
\mathrm{f}^{\prime}(x)=R \mathrm{e}^{2 x} \cos (3 x+\alpha),
$$

where R and α are the constants found in part (a).
(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation $y=\mathrm{f}(x)$ has a turning point.

