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1.  

 
 

Figure 1 
 
Figure 1 shows part of the curve with equation y = −x3 + 2x2 + 2, which intersects the x-axis at 
the point A where x = α.  
 
To find an approximation to α, the iterative formula 
 

xn + 1 = 2)(
2

nx
 + 2 

 
is used. 
 
(a)  Taking x0 = 2.5, find the values of x1, x2, x3 and x4. 
 Give your answers to 3 decimal places where appropriate. 

(3) 

(b) Show that α = 2.359 correct to 3 decimal places. 
(3) 

 

2. (a)  Use the identity cos2 θ + sin2 θ = 1 to prove that tan2 θ = sec2 θ – 1. 
(2) 

(b)  Solve, for 0 ≤ θ < 360°, the equation 
 

2 tan2 θ + 4 sec θ + sec2 θ = 2. 
(6) 
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3.  Rabbits were introduced onto an island. The number of rabbits, P, t years after they were 
introduced is modelled by the equation 

 

P = t5
1

e80 ,   t ∈ ℝ,    t ≥ 0. 
 
(a)  Write down the number of rabbits that were introduced to the island. 

(1) 

(b)  Find the number of years it would take for the number of rabbits to first exceed 1000. 
(2) 

(c)  Find 
t
P

d
d . 

 (2) 

(d)  Find P when 
t
P

d
d  = 50. 

 (3) 

 
4. (i)  Differentiate with respect to x 

 
 (a)  x2 cos 3x, 

(3) 

 (b) 
1

)1ln(
2

2

+
+

x
x . 

(4) 
 
(ii)  A curve C has the equation 

y = √(4x+1),     x > – 4
1 ,    y > 0. 

 
 The point P on the curve has x-coordinate 2. Find an equation of the tangent to C at P in the 

form ax + by + c = 0, where a, b and c are integers. 
(6) 
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5.  

 
 

Figure 2 
 
Figure 2 shows a sketch of part of the curve with equation y = f(x), x ∈ ℝ. 
 
The curve meets the coordinate axes at the points A(0, 1 – k) and B( 2

1 ln k, 0), where k is a 
constant and k >1, as shown in Figure 2. 
 
On separate diagrams, sketch the curve with equation 
 
(a)   y = f (x),   

(3) 

(b)  y = f −1(x). 
(2) 

 
Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts 
the axes. 
 
 
Given that f(x) = e2x − k, 
 
(c)  state the range of f, 

(1) 

(d)  find f −1(x), 
(3) 

(e)  write down the domain of f −1. 
(1) 
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6. (a)  Use the identity cos (A + B) = cos A cos B – sin A sin B, to show that 
 

cos 2A = 1 − 2 sin2 A 
(2) 

 
The curves C1 and C2 have equations 
 
      C1: y = 3 sin 2x 

      C2: y  = 4 sin2 x − 2 cos 2x 
 
(b)  Show that the x-coordinates of the points where C1 and C2 intersect satisfy the equation 
 

4 cos 2x + 3 sin 2x = 2 
(3) 

(c)  Express  4cos 2x + 3 sin 2x in the form R cos (2x – α), where R > 0 and 0 < α < 90°, giving 
the value of α to 2 decimal places. 

(3) 

(d)  Hence find, for 0 ≤ x < 180°, all the solutions of 
 

4 cos 2x + 3 sin 2x = 2, 
 
 giving your answers to 1 decimal place. 

(4) 

 
7. The function f is defined by 

 

 f(x) = 1 – 
)4(

2
+x

 + 
)4)(2(

8
+−

−
xx

x ,    x ∈ ℝ,  x ≠ −4,  x ≠ 2. 

 

(a) Show that f (x) = 
2
3

−
−

x
x . 

 
(5) 

The function g is defined by 
 

g(x) = 
2e
3e

−
−

x

x

,    x ∈ ℝ,  x ≠ ln 2.   

 

(b) Differentiate g(x) to show that g′(x) = 2)2(e
e
−x

x

. 

(3) 

(c)  Find the exact values of x for which g′(x) = 1 
(4) 
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8.  (a)  Write down sin 2x in terms of sin x and cos x. 
(1) 

(b)  Find, for 0 < x < π, all the solutions of the equation 
 

cosec x − 8 cos x = 0. 
 
 giving your answers to 2 decimal places. 

(5) 
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