Year 2 Double Maths (Further Pure 2) Summer Assignment Part 1

Due first lesson in September 2017

1 Show that
$$\sum_{r=1}^{2n} (2r-1)^2 = \frac{2}{3}n(16n^2-1)$$

2 Prove that
$$\sum_{r=1}^{n} r(r+1) = \frac{n}{3}(n+1)(n+2)$$

3. The points $P(4at^2, 4at)$ and $Q(16at^2, 8at)$ lie on the parabola C with equation $y^2 = 4ax$, where a is a positive constant.

(a) Show that an equation of the tangent to *C* at *P* is $2ty = x + 4at^2$.

(b) Hence, write down the equation of the tangent to C at Q.

The tangent to *C* at *P* meets the tangent to *C* at *Q* at the point *R*.

(c) Find, in terms of *a* and *t*, the coordinates of *R*.

4.
$$3x\frac{\mathrm{d}y}{\mathrm{d}x} + y = x$$

5. $x\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = \frac{e^x}{x^2}$

Second Order Differential Equations

6 Find the general solution of the following second order differential equations, leaving your answers in the appropriate form

a)
$$2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 2y = 0$$

b)
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$$

c)
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$$

d)
$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

e)
$$5\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0$$

f)
$$5\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 5y = 0$$

7. Given that $z_1 = 1 + i$, $z_2 = 2 + i$ and $z_3 = 3 + i$, express the following in the form a + bi(a) $\frac{z_1 z_2}{z_3}$ (b) $\frac{(z_2)^2}{z_1}$ (c) $\frac{2z_1 + 5z_3}{z_2}$

2-101 *

The figure above shows a sketch of the curve with equation $y = \frac{x^2 - 1}{|x + 2|}, x \neq -2$ The curve crosses the *x*-axis at x = -1 and the line x = -2 is an asymptote of the curve.

(a) Use algebra to solve the equation $\frac{x^2 - 1}{|x + 2|} = 3(1 - x)$

(b) Hence, or otherwise, find the set of values of x for which $\frac{x^2 - 1}{|x + 2|} < 3(1 - x)$

9 (a) Express
$$\frac{1}{r(r+2)}$$
 in partial fractions

(b) Hence prove, by the method of differences, that $\sum_{r=1}^{n} \frac{4}{r(r+2)} = \frac{n(3n+5)}{(n+1)(n+2)}$

(c) Find the value of
$$\sum_{r=50}^{100} \frac{4}{r(r+2)}$$
, to 4 decimal places

10
$$f(x) = \frac{2}{(x+1)(x+2)(x+3)}$$

(a) Express f(x) in partial fractions

(b) Hence find
$$\sum_{r=1}^{n} f(r)$$

11 (a) Show that
$$\frac{r^3 - r + 1}{r(r+1)} \equiv r - 1 + \frac{1}{r} - \frac{1}{r+1}$$
, for $r \neq 0, -1$

(b) Find $\sum_{r=1}^{n} \frac{r^3 - r + 1}{r(r+1)}$, expressing your answer as a single fraction in its simplest form

(1) Proof
(1)
$$\frac{1}{x+1} - \frac{1}{x+2}$$

(3) $4ty = x + 16at^{2}$ (10c) $R(8at^{2}, 6at)$
(4) $y = \frac{1}{4}x + cx^{-\frac{1}{3}}$
(5) $y = \frac{1}{x^{2}}e^{x} - \frac{1}{x^{4}}e^{x} + \frac{c}{x^{4}}$
6
a) $y = Ae^{2x} + Be^{-\frac{1}{2}x}$
b) $y = e^{2x}(A\cos x + B\sin x)$
c) $y = e^{-4x}(Ax + B)$
d) $y = e^{\frac{1}{2}x}(Ax + B)$
e) $y = e^{-\frac{2}{5}x}\left(A\cos\frac{x}{5} + B\sin\frac{x}{5}\right)$
f) $y = e^{-\frac{3}{5}x}\left(A\cos\frac{4x}{5} + B\sin\frac{4x}{5}\right)$
f) $y = e^{-\frac{3}{5}x}\left(A\cos\frac{4x}{5} + B\sin\frac{4x}{5}\right)$
(7) $\frac{3}{5} + \frac{4}{5}i$ (7b) $\frac{7}{2} + \frac{1}{2}i$ (7c) $\frac{41}{5} - \frac{3}{5}i$
8a) $-\frac{5}{2}, -\frac{7}{4}$ and 1 (8b) $x < -\frac{5}{2}, -\frac{7}{4} < x < 1$
(9a) $\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$ (9c) 0.0398
(10a) $f(x) = \frac{1}{x+1} - \frac{2}{x+2} + \frac{1}{x+3}$
(10b) $\frac{1}{6} - \frac{1}{n+2} + \frac{1}{n+3}$
(11b) $\frac{n(n^{2}+1)}{2(n+1)}$

Year 2 Double Maths (Further Pure 2) Holiday Assignment Part 2

Due during first lesson September 2016

1. a) Find the particular solution of the differential equation

$$x^2 \frac{dy}{dx} = \tan y$$
 where $x = 1$ when $y = \frac{\pi}{2}$.

- b) Find the value of y when x = 0.5, giving your answer to 3 significant figures.
- 2 Find the sum of the series $\ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \ldots + \ln \frac{n}{n+1}$
- 3 Given that for all real values of r, $(2r+1)^3 (2r-1)^3 = Ar^2 + B$, where A and B are constants,
 - (a) Find the value of A and the value of B

(b) Hence show that
$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

(c) Calculate $\sum_{r=1}^{40} (3r-1)^2$

4 (a) On the same axes, sketch the graphs of y = |x-5| and y = |3x-2|(b) Find the set of values of x for which |x-5| < |x-3| > 2|x+1|

5 (a) By expressing
$$\frac{2}{4r^2 - 1}$$
 in partial fractions, or otherwise, prove that $\sum_{r=1}^{n} \frac{2}{4r^2 - 1} = 1 - \frac{1}{2n+1}$

(b) Hence find the exact value of $\sum_{r=11}^{20} \frac{2}{4r^2 - 1}$

6 (a) Express
$$\frac{2}{(r+1)(r+3)}$$
 in partial fractions

(b) Hence prove that
$$\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)} = \frac{n(5n+13)}{6(n+2)(n+3)}$$

7 (a) Express
$$\frac{2r+3}{r(r+1)}$$
 in partial fractions

(b) Hence find
$$\sum_{r=1}^{n} \frac{2r+3}{r(r+1)} \cdot \frac{1}{3^r}$$

- 8 (a) Express as a simplified single fraction $\frac{1}{(r-1)^2} \frac{1}{r^2}$ (b) Hence prove, by the method of differences, that $\sum_{r=2}^{n} \frac{2r-1}{r^2(r-1)^2} = 1 - \frac{1}{n^2}$
- 9. At time *t* minutes an ink stain has area $A \text{ cm}^2$. When t = 1, A = 1 and the rate of increase of *A* is given by $t^2 \frac{dA}{dt} = A\sqrt{A}$.
 - a) Find an expression for A in terms of t.
 - b) Show that *A* never exceeds 4.
- 10 (a) Using the same axes, sketch the curve with equation $y = |x^2 6x + 8|$ and the line with equation 2y = 3x 9. State the coordinates of the points where the curve and the line meet the *x*-axis.

(b) Use algebra to find the coordinates of the points where the curve and the line intersect and, hence, solve the inequality $2|x^2-6x+8| > 3x-9$

11 Find the set of real values of *x* for which

(a)
$$\frac{3x+1}{x-3} < 1$$

(b) $\left| \frac{3x+1}{x-3} \right| < 1$

12 Use algebra to find the set of real values of x for which |x-3| > 2|x+1|

13 (a) Show that
$$\frac{r+1}{r+2} - \frac{r}{r+1} \equiv \frac{1}{(r+1)(r+2)}, r \in \mathbb{Z}^+$$

(b) Hence, or otherwise, find $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)}$, giving your answer as a single fraction in terms of *n*

14
$$f(r) = \frac{1}{r(r+1)}, r \in \mathbb{Z}^+$$

(a) show that $f(r) - f(r+1) = \frac{k}{r(r+1)(r+2)}$, stating the value of k

(b) Hence show, by the method of differences, that $\sum_{r=1}^{2n} \frac{1}{r(r+1)(r+2)} = \frac{n(2n+3)}{4(n+1)(2n+1)}$

15 (a) Express
$$\frac{1}{(x+1)(x+2)}$$
 in partial fractions

(b) Hence, or otherwise, show that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+2)} = \frac{n}{n+2}$

16 Solve, for x, the inequality
$$|5x+a| \le |2x|$$
, where $a > 0$

17 (a) Sketch, on the same axes, the graph of y = |(x-2)(x-4)|, and the line with equation y = 6-2x

(b) Find the exact values of x for which |(x-2)(x-4)| = 6-2x

(c) Hence solve the inequality |(x-2)(x-4)| < 6-2x

18 Use the given boundary conditions to the find the particular solutions of these second order differential equations

a)
$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 10y = 0$$
, given that $y = 4$ and $\frac{dy}{dx} = 11$ when $x = 0$

b)
$$\frac{4d^2y}{dx^2} - 12\frac{dy}{dx} + 9y = 0$$
, given that $y = 4$ and $\frac{dy}{dx} = 3$ when $x = 0$

c)
$$9\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 4y = 0$$
, given that $y = 5$ and $\frac{dy}{dx} = -\frac{4}{3}$ when $x = 0$

d)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$$
, given that $y = 2$ and $\frac{dy}{dx} = -7$ when $x = 0$
e) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 8y = 0$, given that $y = 2$ when $x = 0$, and $y = e^{\frac{\pi}{2}}$ when $x = \frac{\pi}{4}$

19. Solve the differential equation, giving y in terms of x, where $x^3 \frac{dy}{dx} - x^2 y = 1$ and y = 1at x = 1. 20. a) Find the general solution of the differential equation $\cos x \frac{dy}{dx} + y = 1, -\frac{\pi}{2} < x < \frac{\pi}{2}$.

b) Find the particular solution which satisfies the condition that y = 2 at x = 0.

Challenge

Find the set of values of x for which $-1 < \frac{2-x}{2+x} \le 1$

