
Year 2 Double Maths (Further Pure 2) Summer 

Assignment Part 1 

Due first lesson in September 2017 
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3. The points P(4at
2
,4at) and Q(16at

2
,8at) lie on the parabola C with equation y

2 
= 4ax, 

where  a is a positive constant. 

 (a) Show that an equation of the tangent to C at P is 2ty = x + 4at
2
. 

 (b) Hence, write down the equation of the tangent to C at Q. 

 The tangent to C at P meets the tangent to C at Q at the point R. 

 (c) Find, in terms of a and t, the coordinates of R. 
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Second Order Differential Equations 
6 Find the general solution of the following second order differential equations, leaving your 

answers in the appropriate form 

 

a) 2
𝑑2𝑦

𝑑𝑥2
− 3

𝑑𝑦

𝑑𝑥
− 2𝑦 = 0 

 

b) 
𝑑2𝑦

𝑑𝑥2
− 4

𝑑𝑦

𝑑𝑥
+ 5𝑦 = 0 

 

c) 
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+ 16𝑦 = 0 

 

d) 4
𝑑2𝑦
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𝑑𝑥
+ 𝑦 = 0 

 

e) 5
𝑑2𝑦

𝑑𝑥2
+ 4

𝑑𝑦

𝑑𝑥
+ 𝑦 = 0 



 

f) 5
𝑑2𝑦

𝑑𝑥2
+ 6

𝑑𝑦

𝑑𝑥
+ 5𝑦 = 0 

 

7. Given that z1 = 1 + i ,  z2 = 2 + i and  z3 = 3 + i , express the following in the form a + bi 
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The figure above shows a sketch of the curve with equation 
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 The curve crosses the x-axis at 1x    and the line 2x    is an asymptote of the curve. 

 

 (a) Use algebra to solve the equation 
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 (b) Hence, or otherwise, find the set of values of x for which 
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9 (a) Express 
1

( 2)r r 
 in partial fractions 

 

 (b) Hence prove, by the method of differences, that 
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 (c) Find the value of 
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  , to 4 decimal places 
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 (a) Express f (x) in partial fractions 

 

 (b) Hence find 
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11 (a) Show that 
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  , expressing your answer as a single fraction in its simplest form 



  

 

(1) Proof    
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(3) 4ty = x + 16at
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a) 𝑦 = 𝐴𝑒2𝑥 +𝐵𝑒−
1

2
𝑥
 

 

b) 𝑦 = 𝑒2𝑥(𝐴 cos 𝑥 + 𝐵 sin𝑥) 
 

c) 𝑦 = 𝑒−4𝑥(𝐴𝑥 + 𝐵) 
 

d) 𝑦 = 𝑒
1

2
𝑥(𝐴𝑥 + 𝐵) 

 

e) 𝑦 = 𝑒−
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Year 2 Double Maths (Further Pure 2) Holiday 

Assignment Part 2 

Due during first lesson September 2016 
 

 

 

 

1. a) Find the particular solution of the differential equation 

 

    2 d
tan where  1 when  .

d 2

y
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 b) Find the value of y when 0.5x  , giving your answer to 3 significant figures. 

 

2 Find the sum of the series 
1 2 3

ln ln ln ln
2 3 4 1

n

n
   


  

 

3 Given that for all real values of r, 
3 3 2(2 1) (2 1)r r Ar B      , where A and B are 

constants,  

 

 (a) Find the value of A and the value of B 

 

 (b) Hence show that 
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 (c) Calculate 
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4 (a) On the same axes, sketch the graphs of 5y x   and 3 2y x    

 (b) Find the set of values of x for which 5 3 2 1x x x       

5 (a) By expressing 
2
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 in partial fractions, or otherwise, prove that 

2
1

2 1
1

4 1 2 1

n

r r n

 
 

   

 

 (b) Hence find the exact value of  
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6 (a) Express 
2
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 in partial fractions 

 

 (b) Hence prove that 
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7 (a) Express 
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(b) Hence find 
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8 (a) Express as a simplified single fraction 
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 (b) Hence prove, by the method of differences, that 
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9. At time t minutes an ink stain has area 2cmA . When 1, 1t A   and the rate of 

increase of A is given by 2 d

d

A
t A A

t
 . 

 

 a) Find an expression for A in terms of t. 

 b) Show that A never exceeds 4. 

 

10 (a) Using the same axes, sketch the curve with equation 
2 6 8y x x    and the line with 

equation 2 3 9y x   .  State the coordinates of the points where the curve and the line meet 

the x-axis. 

 

 (b) Use algebra to find the coordinates of the points where the curve and the line intersect and, 

hence, solve the inequality 
22 6 8 3 9x x x      

 

11 Find the set of real values of x for which   
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12 Use algebra to find the set of real values of x for which 3 2 1x x     

 

 

13 (a) Show that 
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 (b) Hence, or otherwise, find 
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r r r  
  , giving your answer as a single fraction in 

terms of n 
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 (b) Hence show, by the method of differences, that 
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15 (a) Express 
1
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 in partial fractions 

 

 (b) Hence, or otherwise, show that 
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16 Solve, for x, the inequality 5 2x a x   , where a > 0 

 

 

17 (a) Sketch, on the same axes, the graph of ( 2)( 4)y x x    , and the line with equation 

6 2y x    

 

 (b) Find the exact values of x for which ( 2)( 4) 6 2x x x      

 

 (c) Hence solve the inequality ( 2)( 4) 6 2x x x      

 

18 Use the given boundary conditions to the findthe particular solutions of these second order 

differential equations 

a) 
𝑑2𝑦

𝑑𝑥2
− 7

𝑑𝑦

𝑑𝑥
+ 10𝑦 = 0, given that 𝑦 = 4 and 

𝑑𝑦

𝑑𝑥
= 11 when 𝑥 = 0 

 

b) 
4𝑑2𝑦

𝑑𝑥2
− 12

𝑑𝑦

𝑑𝑥
+ 9𝑦 = 0, given that 𝑦 = 4 and 

𝑑𝑦

𝑑𝑥
= 3 when 𝑥 = 0 

 

c) 9
𝑑2𝑦

𝑑𝑥2
+ 12

𝑑𝑦

𝑑𝑥
+ 4𝑦 = 0, given that 𝑦 = 5 and 

𝑑𝑦

𝑑𝑥
= −

4

3
 when 𝑥 = 0 

 

 

 

d) 
𝑑2𝑦

𝑑𝑥2
+ 4

𝑑𝑦

𝑑𝑥
+ 13𝑦 = 0, given that 𝑦 = 2 and 

𝑑𝑦

𝑑𝑥
= −7 when 𝑥 = 0 

 

e) 
𝑑2𝑦

𝑑𝑥2
− 4

𝑑𝑦

𝑑𝑥
+ 8𝑦 = 0, given that 𝑦 = 2 when 𝑥 = 0, and 𝑦 = 𝑒
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19. Solve the differential equation, giving y in terms of x, where 3 2d
1
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y
x x y

x
   and 1y   

at 1x  . 

20. a) Find the general solution of the differential equation 

d
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y
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     . 

 

 b) Find the particular solution which satisfies the condition that 2 at 0y x  . 

  



Challenge 

Find the set of values of x for which 
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Answers 

 (1a) 
1

lnsin 1y
x

   (1b) 

0.377 

(2) – ln(n + 1) 

(3c) 194 380 
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3 4
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(9b) since for  0, 1 so  4t t t A    . 

(10a) Curve = (2, 0) and (4, 0), Line = (3, 0) 

(10b) A =  7 3
2 4
,  , B = (5, 3) 

(10c) 1
2

3 , 5x x    

(11a) 2 3x                  (13b) 1
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(14a) k = 2 

(14a) 
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(16) 1 1
3 7
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(17b) 2 − √2 and 4 − √2    (17c) 2 − √2 < x < 

4−√2 

(18 

a) 𝑦 = 𝑒5𝑥 + 3𝑒2𝑥 

b) 𝑦 = 𝑒
3𝑥

2 (4 − 3𝑥) 

c) 𝑦 = 𝑒−
2𝑥

3 (2𝑥 + 5) 
d) 𝑦 = 𝑒−2𝑥(2 cos 3𝑥 − sin3𝑥) 
e) 𝑦 = 𝑒−3𝑥(2 cos 2𝑥 − sin2𝑥) 
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