Year 2 Double Maths (Further Pure 2) Summer Assignment Part 1

Due first lesson in September 2017

1 Show that $\sum_{r=1}^{2 n}(2 r-1)^{2}=\frac{2}{3} n\left(16 n^{2}-1\right)$

2 Prove that $\sum_{r=1}^{n} r(r+1)=\frac{n}{3}(n+1)(n+2)$
3. The points $P\left(4 a t^{2}, 4 a t\right)$ and $Q\left(16 a t^{2}, 8 a t\right)$ lie on the parabola C with equation $y^{2}=4 a x$, where a is a positive constant.
(a) Show that an equation of the tangent to C at P is $2 t y=x+4 a t^{2}$.
(b) Hence, write down the equation of the tangent to C at Q.

The tangent to C at P meets the tangent to C at Q at the point R.
(c) Find, in terms of a and t, the coordinates of R.
4. $3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x$
5. $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=\frac{e^{x}}{x^{2}}$

Second Order Differential Equations

6 Find the general solution of the following second order differential equations, leaving your answers in the appropriate form
a) $2 \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-2 y=0$
b) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+5 y=0$
c) $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=0$
d) $4 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0$
e) $5 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=0$
f) $5 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+5 y=0$
7. Given that $\mathrm{z}_{1}=1+\mathrm{i}, \mathrm{z}_{2}=2+\mathrm{i}$ and $\mathrm{z}_{3}=3+\mathrm{i}$, express the following in the form $\mathrm{a}+\mathrm{bi}$
(a) $\frac{z_{1} z_{2}}{z_{3}}$
(b) $\frac{\left(z_{2}\right)^{2}}{z_{1}}$
(c) $\frac{2 z_{1}+5 z_{3}}{z_{2}}$

8

The figure above shows a sketch of the curve with equation $y=\frac{x^{2}-1}{|x+2|}, x \neq-2$
The curve crosses the x-axis at $x=-1$ and the line $x=-2$ is an asymptote of the curve.
(a) Use algebra to solve the equation $\frac{x^{2}-1}{|x+2|}=3(1-x)$
(b) Hence, or otherwise, find the set of values of x for which $\frac{x^{2}-1}{|x+2|}<3(1-x)$

9 (a) Express $\frac{1}{r(r+2)}$ in partial fractions
(b) Hence prove, by the method of differences, that $\sum_{r=1}^{n} \frac{4}{r(r+2)}=\frac{n(3 n+5)}{(n+1)(n+2)}$
(c) Find the value of $\sum_{r=50}^{100} \frac{4}{r(r+2)}$, to 4 decimal places
$10 \quad \mathrm{f}(x)=\frac{2}{(x+1)(x+2)(x+3)}$
(a) Express $\mathrm{f}(x)$ in partial fractions
(b) Hence find $\sum_{r=1}^{n} \mathrm{f}(r)$

11 (a) Show that $\frac{r^{3}-r+1}{r(r+1)} \equiv r-1+\frac{1}{r}-\frac{1}{r+1}$, for $r \neq 0,-1$
(b) Find $\sum_{r=1}^{n} \frac{r^{3}-r+1}{r(r+1)}$, expressing your answer as a single fraction in its simplest form

(3) $4 t y=x+16 a t^{2}(10 \mathrm{c}) R\left(8 a t^{2}, 6 a t\right)$
(4) $y=\frac{1}{4} x+c x^{-\frac{1}{3}}$
(5) $y=\frac{1}{x^{3}} e^{x}-\frac{1}{x^{4}} e^{x}+\frac{c}{x^{4}}$

6
a) $y=A e^{2 x}+B e^{-\frac{1}{2} x}$
b) $y=e^{2 x}(A \cos x+B \sin x)$
c) $y=e^{-4 x}(A x+B)$
d) $y=e^{\frac{1}{2} x}(A x+B)$
e) $y=e^{-\frac{2}{5} x}\left(A \cos \frac{x}{5}+B \sin \frac{x}{5}\right)$
f) $y=e^{-\frac{3}{5} x}\left(A \cos \frac{4 x}{5}+B \sin \frac{4 x}{5}\right)$
(7) $\frac{3}{5}+\frac{4}{5} i$
(7b) $\frac{7}{2}+\frac{1}{2} i$
(7c) $\frac{41}{5}-\frac{3}{5} i$

8a) $-\frac{5}{2},-\frac{7}{4}$ and $1 \quad$ (8b) $x<-\frac{5}{2},-\frac{7}{4}<x<1$
$\begin{array}{ll}\text { (9a) } \frac{1}{r(r+2)}=\frac{1}{2 r}-\frac{1}{2(r+2)} & \text { (9c) } 0.0398\end{array}$
(10a) $\mathrm{f}(x)=\frac{1}{x+1}-\frac{2}{x+2}+\frac{1}{x+3}$
(10b) $\frac{1}{6}-\frac{1}{n+2}+\frac{1}{n+3}$
(11b) $\frac{n\left(n^{2}+1\right)}{2(n+1)}$

Year 2 Double Maths (Further Pure 2) Holiday Assignment Part 2

Due during first lesson September 2016

1. a) Find the particular solution of the differential equation

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\tan y \text { where } x=1 \text { when } y=\frac{\pi}{2} \text {. }
$$

b) Find the value of y when $x=0.5$, giving your answer to 3 significant figures.

2 Find the sum of the series $\ln \frac{1}{2}+\ln \frac{2}{3}+\ln \frac{3}{4}+\ldots+\ln \frac{n}{n+1}$
3 Given that for all real values of $r,(2 r+1)^{3}-(2 r-1)^{3}=A r^{2}+B$, where A and B are constants,
(a) Find the value of A and the value of B
(b) Hence show that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$
(c) Calculate $\sum_{r=1}^{40}(3 r-1)^{2}$
x.
(a) On the same axes, sketch the graphs of $y=|x-5|$ and $y=|3 x-2|$
(b) Find the set of values of x for which $|x-5|<|x-3|>2|x+1|$
(a) By expressing $\frac{2}{4 r^{2}-1}$ in partial fractions, or otherwise, prove that $\sum_{r=1}^{n} \frac{2}{4 r^{2}-1}=1-\frac{1}{2 n+1}$
(b) Hence find the exact value of $\sum_{r=11}^{20} \frac{2}{4 r^{2}-1}$

6 (a) Express $\frac{2}{(r+1)(r+3)}$ in partial fractions
(b) Hence prove that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}=\frac{n(5 n+13)}{6(n+2)(n+3)}$
(a) Express $\frac{2 r+3}{r(r+1)}$ in partial fractions
(b) Hence find $\sum_{r=1}^{n} \frac{2 r+3}{r(r+1)} \cdot \frac{1}{3^{r}}$

8 (a) Express as a simplified single fraction $\frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}$
(b) Hence prove, by the method of differences, that $\sum_{r=2}^{n} \frac{2 r-1}{r^{2}(r-1)^{2}}=1-\frac{1}{n^{2}}$
9. At time t minutes an ink stain has area $A \mathrm{~cm}^{2}$. When $t=1, A=1$ and the rate of increase of A is given by $t^{2} \frac{\mathrm{~d} A}{\mathrm{~d} t}=A \sqrt{A}$.
a) Find an expression for A in terms of t.
b) Show that A never exceeds 4 .

10 (a) Using the same axes, sketch the curve with equation $y=\left|x^{2}-6 x+8\right|$ and the line with equation $2 y=3 x-9$. State the coordinates of the points where the curve and the line meet the x-axis.
(b) Use algebra to find the coordinates of the points where the curve and the line intersect and, hence, solve the inequality $2\left|x^{2}-6 x+8\right|>3 x-9$

11 Find the set of real values of x for which
(a) $\frac{3 x+1}{x-3}<1$
(b) $\left|\frac{3 x+1}{x-3}\right|<1$

13 (a) Show that $\frac{r+1}{r+2}-\frac{r}{r+1} \equiv \frac{1}{(r+1)(r+2)}, r \in \mathbb{Z}^{+}$
(b) Hence, or otherwise, find $\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)}$, giving your answer as a single fraction in terms of n
$14 \mathrm{f}(r)=\frac{1}{r(r+1)}, r \in \mathbb{Z}^{+}$
(a) show that $\mathrm{f}(r)-\mathrm{f}(r+1)=\frac{k}{r(r+1)(r+2)}$, stating the value of k
(b) Hence show, by the method of differences, that $\sum_{r=1}^{2 n} \frac{1}{r(r+1)(r+2)}=\frac{n(2 n+3)}{4(n+1)(2 n+1)}$
(a) Express $\frac{1}{(x+1)(x+2)}$ in partial fractions
(b) Hence, or otherwise, show that $\sum_{r=1}^{n} \frac{2}{(r+1)(r+2}=\frac{n}{n+2}$

16 Solve, for x, the inequality $|5 x+a| \leq|2 x|$, where $a>0$

17 (a) Sketch, on the same axes, the graph of $y=|(x-2)(x-4)|$, and the line with equation $y=6-2 x$
(b) Find the exact values of x for which $|(x-2)(x-4)|=6-2 x$
(c) Hence solve the inequality $|(x-2)(x-4)|<6-2 x$

18 Use the given boundary conditions to the findthe particular solutions of these second order differential equations
a) $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+10 y=0$, given that $y=4$ and $\frac{d y}{d x}=11$ when $x=0$
b) $\frac{4 d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+9 y=0$, given that $y=4$ and $\frac{d y}{d x}=3$ when $x=0$
c) $9 \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+4 y=0$, given that $y=5$ and $\frac{d y}{d x}=-\frac{4}{3}$ when $x=0$
d) $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+13 y=0$, given that $y=2$ and $\frac{d y}{d x}=-7$ when $x=0$
e) $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+8 y=0$, given that $y=2$ when $x=0$, and $y=e^{\frac{\pi}{2}}$ when $x=\frac{\pi}{4}$
19. Solve the differential equation, giving y in terms of x, where $x^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x^{2} y=1$ and $y=1$ at $x=1$.
20. a) Find the general solution of the differential equation $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=1,-\frac{\pi}{2}<x<\frac{\pi}{2}$.
b) Find the particular solution which satisfies the condition that $y=2$ at $x=0$.

Challenge

Find the set of values of x for which $-1<\frac{2-x}{2+x} \leq 1$

Answers

(1a) $\ln \sin y=1-\frac{1}{x}$
0.377
(2) $-\ln (n+1)$
(3c) 194380
(4a)

(4b) $\left.x<-\frac{2}{3}, x\right\rangle \frac{7}{4}$
(5b) $\frac{20}{861}$ (16a) $A=24, B=2$
(6a) $\frac{2}{(r+1)(r+3)}=\frac{1}{r+1}-\frac{1}{r+3}$
(7a) $\frac{2 r+3}{r(r+1)}=\frac{3}{r}-\frac{1}{r+1}$
$1-\frac{1}{3^{n}(n+1)}$
(8a) $\frac{2 r-1}{r^{2}(r-1)^{2}}$
(9a) $A=\frac{4 t^{2}}{(1+t)^{2}}$
(9b) since for $t>0, t<(1+t)$ so $A<4$.
(10a) Curve $=(2,0)$ and $(4,0)$, Line $=(3,0)$
(10b) $A=\left(\frac{7}{2}, \frac{3}{4}\right), B=(5,3)$
(10c) $x<3 \frac{1}{2}, x>5$
(11a) $-2<x<3$
(13b) $-2<x<\frac{1}{2}$
(12) $-5<x<\frac{1}{3}$
(1b) (13b) $\frac{n}{2(n+2)}$
(14a) $k=2$
(14a) $\frac{1}{(x+1)(x+2)}=\frac{1}{x+1}-\frac{1}{x+2}$
(16) $-\frac{1}{3} a \leq x \leq \frac{1}{7} a$
(17a)

(17b) $2-\sqrt{2}$ and $4-\sqrt{2} \quad(17 c) 2-\sqrt{2}<x<$ $4-\sqrt{2}$
(18
a) $y=e^{5 x}+3 e^{2 x}$
b) $y=e^{\frac{3 x}{2}}(4-3 x)$
c) $y=e^{-\frac{2 x}{3}}(2 x+5)$
d) $y=e^{-2 x}(2 \cos 3 x-\sin 3 x)$
e) $y=e^{-3 x}(2 \cos 2 x-\sin 2 x)$
(19) $y=\frac{-1}{3 x^{2}}+\frac{4 x}{3}$
(20a) $y=1+\frac{c}{\sec x+\tan x}$
(20b) $y=1+\frac{1}{\sec x+\tan x}$ or $y=1+\frac{\cos x}{1+\sin x}$

Challenge Question

$x \geq 0$

