BHASVIC Maths

Doubles Tracking Test 1B

<u>(44 minutes) – 36 marks</u>

Name_

1. The times it took a random sample of runners to complete a race are summarised in the table.

Time taken (<i>t</i>	20-29	30-39	40-49	50-59	60-69
Frequency	5	10	36	20	9

(a) Use interpolation to estimate the interquartile range. The midpoint of each class was represented by x and its corresponding frequency by f , giving:	(3 marks)
$\sum fx = 3740, \sum fx^2 = 183040$	
(b) Estimate the variance and standard deviation for this data.	(3 marks)

- 2. A car is observed travelling along a straight horizontal road between two points on a road, A and B, where AB = 1362m. At time t = 0 s the car goes past point A with speed $30ms^{-1}$. The car maintains this speed for 17s. The car decelerates uniformly to a speed of $12ms^{-1}$. The car maintains the speed of $12ms^{-1}$ until it goes past B. The car took 70 s to travel from A to B
- a) Sketch a speed time graph to show the motion of the car from *A* to *B*.
- b) Calculate the deceleration of the car during the motion described above.

(4 marks)

(2 marks)

3.	3. A teacher standardises the test marks of his class be adding 12 to each one and then reducing the mark by 20%. If the standardised marks are represented by <i>t</i> and the original marks by <i>m</i> :			.0%.				
	(a)	Write down a f	ormula for the coding	the teacher has u	used.			(1 mark)
	The	following sum	nary statistics are calc	culated for the sta	andardised marks	:		
		<i>n</i> = 28	$\overline{t} = 52.8$	$S_{tt} = 7.3$				
	(b)	Calculate the m	nean and standard devi	iation of the orig	inal marks gained	d.		(3 marks)

4.	Three posts P, Q and R, are fixed in that order at the side of a straight horizontal road. The distance from P to Q is 45m
	and the distance from Q to R is 120m. A car is moving along the road with constant acceleration $a \text{ m s}^{-2}$. The speed of the
	car, as it passes P, is $u \text{ m s}^{-1}$. The car passes Q two seconds after passing P, and the car passes R four seconds after
	passing Q. Find:

(i) the value of u,

(ii) the value of *a*.

(7 marks)

5.	The diagram shows	the sector OAB of	f a circle with centre (D. radius 12cm and	angle 1.2 radians.
•••	The diagram bito no	the sector of the of		\mathbf{S} , indicate $\mathbf{I} = \mathbf{V}$ in this	angle instantion

The line AC is a tangent to the circle with centre O, and OBC is a straight line.

The region R is bounded by the arc AB and the lines AC and CB.

(a) Find the area of R, giving your answer to 2 decimal places.	(8 marks)
---	-----------

(b) Find the perimeter of DAB.

(5 marks)

TT1 Part B

Answer:

1.

- **a** t = 0.8(m + 12)
- **b** Mean of the standardised marks = $\overline{t} = 52.8$

$$\overline{t} = 0.8(\overline{m} + 12)$$

 $\overline{m} = \frac{52.8}{0.8} - 12$

Mean of the original marks = 54

Standard deviation of the standardised marks = $\sqrt{\frac{S_u}{n}} = \sqrt{\frac{7.3}{28}} = 0.5106...$ Standard deviation of the original marks = $\frac{0.5106...}{0.8} = 0.64$

[7]

4.

$$45 = 2u + \frac{1}{2}a2^{2} \implies 45 = 2u + 2a \qquad M1 \text{ A1}$$

$$165 = 6u + \frac{1}{2}a6^{2} \implies 165 = 6u + 18a \qquad M1 \text{ A1}$$
eliminating either u or a
$$M1$$

$$u = 20 \text{ and } a = 2.5 \qquad A1 \text{ A1}$$

5.

(a)Area of sector = $(1/2)(1.2)(12^2)M1$ A1

AC = (12)(tan1.2) = 30.866 M1 A1

Area of triangle = (1/2)(12)(30.866...)=185.1949... M1 A1

Area = triangle - sector = 98.79cm² (2dp) M1 A1 must have units

B) AB = (1.2)(12) = 14.4 M1 A1

BD=12sin(1.2)=11.18 M1 A1

 $DA=12-OD = 12-12\cos(1.2)=7.35...$ M1 A1

Perimeter = AD+AB+BD=33.24cm A1