BHASVIC MaTHS

Doubles Tracking Test 1B

(44 minutes) - 36 marks

Name

1. The times it took a random sample of runners to complete a race are summarised in the table.

Time taken $(t$ minutes $)$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
Frequency	5	10	36	20	9

(a) Use interpolation to estimate the interquartile range.

The midpoint of each class was represented by x and its corresponding frequency by f, giving:
$\sum f x=3740, \sum f x^{2}=183040$
(b) Estimate the variance and standard deviation for this data.
\qquad
2. A car is observed travelling along a straight horizontal road between two points on a road, A and B, where $A B=1362 \mathrm{~m}$. At time $t=0 s$ the car goes past point A with speed $30 \mathrm{~ms}^{-1}$. The car maintains this speed for 17 s . The car decelerates uniformly to a speed of $12 \mathrm{~ms}^{-1}$. The car maintains the speed of $12 \mathrm{~ms}^{-1}$ until it goes past B. The car took 70 s to travel from A to B
a) Sketch a speed time graph to show the motion of the car from A to B.
b) Calculate the deceleration of the car during the motion described above.
\qquad
3. A teacher standardises the test marks of his class be adding 12 to each one and then reducing the mark by 20%. If the standardised marks are represented by t and the original marks by m :
(a) Write down a formula for the coding the teacher has used.

The following summary statistics are calculated for the standardised marks:

$$
n=28 \quad \bar{t}=52.8 \quad S_{t t}=7.3
$$

(b) Calculate the mean and standard deviation of the original marks gained.
\qquad
4. Three posts P, Q and R, are fixed in that order at the side of a straight horizontal road. The distance from P to Q is 45 m and the distance from Q to R is 120 m . A car is moving along the road with constant acceleration $a \mathrm{~m} \mathrm{~s}^{-2}$. The speed of the car, as it passes P, is $u \mathrm{~m} \mathrm{~s}^{-1}$. The car passes Q two seconds after passing P, and the car passes R four seconds after passing Q. Find:
(i) the value of u,
(ii) the value of a.
\qquad
5. The diagram shows the sector OAB of a circle with centre O , radius 12 cm and angle 1.2 radians. The line AC is a tangent to the circle with centre O , and OBC is a straight line.

The region R is bounded by the arc $A B$ and the lines $A C$ and $C B$.
(a) Find the area of R, giving your answer to 2 decimal places.

The line BD is parallel to AC.
(b) Find the perimeter of DAB.
(5 marks)

\qquad

TT1 Part B

Answer:

1.

a) $\mathrm{Q} 1=39.5+(5 / 36)^{*}(10)=40.8888 \ldots$ correct

Q3-Q1=13.11111=13.1 minutes (3sf)
$\mathrm{Q} 3=49.5+(9 / 20)^{*}(10)=54$
M1 one answer, correct method A1 for both
b) $\frac{183040}{80}-\left(\frac{3740}{80}\right)^{2}=102$ minutes $^{2}(3 s f)$ M1 A1
sd. $=\mathrm{sqrt}=10.1$ minutes $(3 \mathrm{sf}) \quad \mathrm{A} 1$

a $t=0.8(m+12)$
b Mean of the standardised marks $=\bar{t}=52.8$

$$
\begin{aligned}
& \bar{t}=0.8(\bar{m}+12) \\
& \bar{m}=\frac{52.8}{0.8}-12
\end{aligned}
$$

Mean of the original marks $=54$
Standard deviation of the standardised marks $=\sqrt{\frac{S_{t}}{n}}=\sqrt{\frac{7.3}{28}}=0.5106 \ldots$
Standard deviation of the original marks $=\frac{0.5106 \ldots}{0.8}=0.64$
4.

$$
\begin{array}{cc}
45=2 u+\frac{1}{2} a 2^{2} \quad \Rightarrow \quad 45=2 u+2 a & \text { M1 Al } \\
165=6 u+\frac{1}{2} a 6^{2} \quad \Rightarrow \quad 165=6 u+18 a & \text { M1 Al } \\
\text { eliminating either } u \text { or } a & \text { M1 } \\
u=20 \text { and } a=2.5 & \text { Al Al }
\end{array}
$$

[7]
5.
(a)Area of sector $=(1 / 2)(1.2)\left(12^{\wedge} 2\right) \mathrm{M} 1 \mathrm{~A} 1$
$\mathrm{AC}=(12)(\tan 1.2)=30.866 \quad \mathrm{M} 1 \mathrm{~A} 1$
Area of triangle $=(1 / 2)(12)(30.866 \ldots)=185.1949 \ldots$ M1 A1
Area $=$ triangle - sector $=98.79 \mathrm{~cm}^{\wedge} 2(2 \mathrm{dp})$ M1 A1 must have units
B) $\mathrm{AB}=(1.2)(12)=14.4 \quad \mathrm{M} 1 \mathrm{~A} 1$
$\mathrm{BD}=12 \sin (1.2)=11.18 \quad$ M1 A1
$\mathrm{DA}=12-\mathrm{OD}=12-12 \cos (1.2)=7.35 \ldots$
Perimeter $=\mathrm{AD}+\mathrm{AB}+\mathrm{BD}=33.24 \mathrm{~cm}$
A1
a. A1

B1 Original Mean $=54$

M1 Using Stt / n

A1 cao

A1

