BHASVIC Maths

Doubles Tracking Test 1A

<u>(45 minutes) – 38 marks</u>

Name_

1.	Given that for all values of x: $3x^2 + 12x + 5 = p(x+q)^2 + r$ (a) Find the values of <i>p</i> , <i>q</i> and <i>r</i> . (b) Hence solve the equation $3x^2 + 12x + 5 = 0$.	(3 marks) (2 marks)

2. The curve *C* has the equation

$$y = x^3 - 9x$$

- (a) Sketch the graph of *C*.
- (b) Hence sketch on a separate diagram the graph of

$$y = (x + 2)^3 - 9(x + 2)$$
 (2 marks)

(2 marks)

Each of the two sketches must include the coordinates of all the points where the curve meets the coordinate axes.

3	B. Prove, from first principles, that the derivative of $4x^2$ is $8x$ (4)	4 marks)

Figure 1 shows a right angled triangle *LMN*.

The points L and M have coordinates (-1, 2) and (7, -4) respectively.

(*a*) Find an equation for the straight line passing through the points *L* and *M*. Give your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

Given that the coordinates of point *N* are (16, *p*), where *p* is a constant, and angle $LMN = 90^{\circ}$,

(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,

(c) find the y coordinate of K.

(2 marks)

(4 marks)

(3 marks)

Figure 2 shows the curve, *C*, with the equation

 $y = x^2 - 2x + 3$

The points P(-1, 6), Q(0, 3) and R all lie on C.

Given that angle PQR = 90° , determine the exact coordinates of *R*.

(6 marks)

6. The curve *C* has the equation

$$y = \frac{(x^2 + 4)(x - 3)}{2x}$$
 $x \neq 0.$

(a) Find $\frac{dy}{dx}$ in its simplest form.

(5 marks)

(*b*) Find an equation of the tangent to *C* at the point where x = -1

Give your answer in the form ax + by + c = 0, where a, b, and c are integers.

(5 marks)

TT1 Part A

Answer:

1: (a) p=3, q=2, r=-7 M1 for correct attempt at completing the square or comparing coefficients

A1 for 3, 2 A1 for -7

(a) $x + 2 = \pm \sqrt{\frac{7}{3}}$ M1 must have plus/minus $-2 \pm \sqrt{\frac{7}{3}}$ A1 for correct answer

2: (a) M1 Correct Shape

- A1 x intercept at \pm 3, 0 (also y intercept = 0)
- (b) M1 Horizontal translation A1 Correct direction and all intercepts.

3:

$$f(x) = 4x^{2}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{4(x+h)^{2} - 4x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{4x^{2} + 8xh + 4h^{2} - 4x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{8xh + 4h^{2}}{h}$$

$$= \lim_{h \to 0} \frac{h(8x + 4h)}{h}$$

$$= \lim_{h \to 0} (8x + 4h)$$
As $h \to 0$, $8x + 4h \to 8x$.
So $f'(x) = 8x$

M1 Attempt at correct formula
A1 Correct expansion
M1 Remove factor of <i>h</i>
A1 Full proof.

	Method 1	Method 2		
4.(a)	gradient = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{2 - (-4)}{-1 - 7}$, = $-\frac{3}{4}$ $\frac{y_1 - y_1}{y_2 - y_1} = \frac{x_1 - x_1}{x_2 - x_1}$, so $\frac{y_1 - y_1}{-1 - 8} = \frac{x_1 - x_1}{-8}$		M1, A1	
	$y-2 = -\frac{3}{4}(x+1)$ or $y+4 = -\frac{3}{4}$		M1	
	$\Rightarrow \pm (4y + 3x - 5) = 0$		A1	(4)
	Method 3: Substitute $x = -1$, $y = 2$ and $x = 7$, $y = -4$ into $ax + by + c=0$		M1	
	-a + 2b + c = 0 and $7a - 4b + c = 0$		A1	
	Solve to obtain $a = 3$, $b = 4$ and $c = -5$ or multiple of these numbers		M1 A1	(4)
(b)	Attempts gradient LM × gradient MN = - so $-\frac{3}{4} \times \frac{p+4}{16-7} = -1$ or $\frac{p+4}{16-7} = \frac{4}{3}$	-1 Or $(y+4) = \frac{4}{3}(x-7)$ equation with $x = 16$ substituted	M1	
	$p+4 = \frac{9 \times 4}{3} \Longrightarrow p = \dots$, $p = 8$	So y =, y = 8	M1, A1	(3)
(c)	\downarrow Fitner (V=) $p + b$ or $2 + p + 4$	Or use 2 perpendicular line equations through L and N and solve for y	M1	
	(<i>y</i> =) 14		A1	(2)
			(9	marks)

5: M1 Method to find gradient PQ to find Gradient QR

M1 Method to find equation of QR

A1
$$y = \frac{1}{3}x + 3$$
 (any form okay)

M1 Attempt to solve simultaneously ft. quadratic solving method $\frac{1}{3}x + 3 = x^2 - 2x + 3$

A1 (both)
$$x = 0$$
 (point Q) $x = \frac{7}{3}$
at $x = \frac{7}{3}$, $y = \frac{34}{9}$
A1 $(\frac{7}{3}, \frac{34}{9})$

6. (a)	(x2+4)(x-3) = x3 - 3x2 + 4x - 12	M1
		M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	
		A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x - \frac{3}{2} + \frac{6}{x^2}$	ddM1
	$\begin{bmatrix} ax & 2 & x \\ oe & e.g. \frac{2x^3 - 3x^2 + 12}{2x^2} \end{bmatrix}$	
	$2x^2$	A1
		(5)
(b)	At $x = -1$, $y = 10$	B1
	$\left(\frac{dy}{dx} = \right) - 1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1A1
	y - '10' = '3.5'(x1)	M1
	2y - 7x - 27 = 0	A1
		(5)
		(10 marks)