BHASVIC MaTHS
 Doubles Tracking Test 1A

(45 minutes) - 38 marks

Name

1. Given that for all values of $x: 3 x^{2}+12 x+5=p(x+q)^{2}+r$
(a) Find the values of p, q and r.
(3 marks)
(b) Hence solve the equation $3 x^{2}+12 x+5=0$.
(2 marks)
\qquad
2. The curve C has the equation

$$
y=x^{3}-9 x
$$

(a) Sketch the graph of C.
(b) Hence sketch on a separate diagram the graph of

$$
y=(x+2)^{3}-9(x+2)
$$

Each of the two sketches must include the coordinates of all the points where the curve meets the coordinate axes.
\qquad
3. Prove, from first principles, that the derivative of $4 x^{2}$ is $8 x$
\qquad

Figure 1
Figure 1 shows a right angled triangle $L M N$.
The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively.
(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Given that the coordinates of point N are $(16, p)$, where p is a constant, and angle $L M N=90^{\circ}$,
(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,
(c) find the y coordinate of K.
5.

Figure 2
Figure 2 shows the curve, C, with the equation

$$
y=x^{2}-2 x+3
$$

The points $P(-1,6), Q(0,3)$ and R all lie on C.

Given that angle $\mathrm{PQR}=90^{\circ}$, determine the exact coordinates of R.
\qquad
6. The curve C has the equation

$$
y=\frac{\left(x^{2}+4\right)(x-3)}{2 x} \quad x \neq 0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=-1$

Give your answer in the form $a x+b y+c=0$, where a, b, and c are integers.
\qquad

Answer:
1: (a) $p=3, q=2, r=-7$
M1 for correct attempt at completing the square or comparing coefficients

$$
\text { A1 for } 3,2 \quad \text { A1 for }-7
$$

(a) $x+2= \pm \sqrt{\frac{7}{3}} \quad$ M1 must have plus/minus

$$
-2 \pm \sqrt{\frac{7}{3}} \quad \mathrm{~A} 1 \text { for correct answer }
$$

2: (a) M1 Correct Shape
A1 x intercept at $\pm 3,0($ also y intercept $=0)$
(b) M1 Horizontal translation

A1 Correct direction and all intercepts.

3:

$$
\begin{aligned}
\mathrm{f}(x) & =4 x^{2} \\
\mathrm{f}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-4 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{2}+8 x h+4 h^{2}-4 x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{8 x h+4 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(8 x+4 h)}{h} \\
& =\lim _{h \rightarrow 0}(8 x+4 h)
\end{aligned}
$$

As $h \rightarrow 0,8 x+4 h \rightarrow 8 x$.
So $\mathrm{f}^{\prime}(x)=8 x$

M1 Attempt at correct formula

A1 Correct expansion

M1 Remove factor of h

A1 Full proof.

5: M1 Method to find gradient PQ to find Gradient QR
M1 Method to find equation of QR
A1 $y=\frac{1}{3} x+3$ (any form okay)
M1 Attempt to solve simultaneously ft. quadratic solving method $\frac{1}{3} x+3=x^{2}-2 x+3$
A1 (both) $x=0 \quad$ (point Q$) \quad x=\frac{7}{3}$
at $x=\frac{7}{3}, y=\frac{34}{9}$
A1 $\left(\frac{7}{3}, \frac{34}{9}\right)$

6. (a)	$\left(x^{2}+4\right)(x-3)=x^{3}-3 x^{2}+4 x-12$	M1
	$\frac{x^{3}-3 x^{2}+4 x-12}{2 x}=\frac{x^{2}}{2}-\frac{3}{2} x+2-6 x^{-1}$	M1
		A1
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=x-\frac{3}{2}+\frac{6}{x^{2}} \\ & \text { oe e.g. } \frac{2 x^{3}-3 x^{2}+12}{2 x^{2}} \end{aligned}$	ddM1
		(5)
(b)	At $x=-1, y=10$	B1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)-1-\frac{3}{2}+\frac{6}{1}=3.5$	M1A1
	$y-10{ }^{\prime}={ }^{\prime} 3.5{ }^{\prime}(x-1)$	M1
	$2 y-7 x-27=0$	A1
		(5)
		(10 marks)

