Doubles Tracking Test 2 part B
 (37 marks 44 minutes)

Name:

Teacher:

> Probability
> $\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$
> $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
> $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)$
> $\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \mathrm{P}(A)}{\mathrm{P}(B \mid A) \mathrm{P}(A)+\mathrm{P}\left(B \mid A^{\prime}\right) \mathrm{P}\left(A^{\prime}\right)}$

For independent events A and B

Kinematics

For motion in a straight line with constant acceleration:
$v=u+a t$
$s=u t+\frac{1}{2} a t^{2}$
$s=v t-\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$s=\frac{1}{2}(u+v) t$
$\mathrm{P}(B \mid A)=\mathrm{P}(B)$
$\mathrm{P}(A \mid B)=\mathrm{P}(A)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$

1) Given that

$$
P(A)=0.35, P(B)=0.45 \text { and } P(A \cap B)=0.13
$$

Find
(a) $P\left(A^{\prime} \mid B^{\prime}\right)$

The event C has $P(C)=0.20$
The events A and C are mutually exclusive and the event B and C are independent.
(b) Find $P(B \cap C)$
(c) Draw a Venn diagram to illustrate the events A, B and C and the probabilities for each region.
(d) Find $P\left([B \cup C]^{\prime}\right)$
(2)
\qquad
2) The mass of a piece of plutonium (M grams) after t seconds is given by $M=k e^{-0.01 t}$.
a) Sketch the graph of M against t
b) Given that the initial mass is 10 g , how long will it take to reach 25% of its original mass
3) A cricket ball is struck from a point A which is 1 m above level horizontal ground with speed of $25 \mathrm{~ms}^{-1}$ at angle 30^{0} above the horizontal. The ball first hits the ground at point B. The ball is modelled as a particle moving through still air without any resistance. Take $g=9.8 \mathrm{~ms}^{-2}$.
a) Determine the horizontal distance from A to B.
b) Calculate the speed of the ball as it reaches B
4)

A particle P of weight 60 N is suspended by two strings from a fixed horizontal ceiling. The particle hangs in equilibrium.

The strings are light and inextensible and are inclined at 40° and 20° to the ceiling, as shown in the figure above.

Find the tension in each of the two strings.
\qquad

\longrightarrow
\longrightarrow
\longrightarrow
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
(a) $\begin{aligned} \mathrm{P}(A \cup B)=0.35+0.45-0.13 & \underline{\text { or }} 0.22+0.13+0.32 \\ & =\underline{\mathbf{0 . 6 7}}\end{aligned}$
(b) $\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$ or $\frac{0.33}{0.55}$ $=\frac{3}{5}$ or 0.6
(c) $\mathrm{P}(B \cap C)=0.45 \times 0.2$

$$
=\underline{\mathbf{0 . 0 9}}
$$

(d)

Allow $1^{\text {st }} \mathrm{B} 1$ for 3 intersecting circles in a box with zeros in the regions for $A \cap C$
Do not accept "blank" for zero
(e) $\mathrm{P}(B \cup C)^{\prime}=0.22+\underline{0.22}$ or $1-[0.56]$ or $1-[0.13+0.23+0.09+0.11]$ o.e. $=0.44$
(2)
(2)
(2)

相

2a			B1 exponential shape B1 correct graph
2b			

