Doubles Tracking Test 2 part A (38 marks: 46 minutes)

Name:

Teacher:
1)

The figure below shows the design of a theatre stage which is the shape of a semicircle attached to a rectangle. The diameter of the semicircle is $2 x \mathrm{~m}$ and is attached to one side of the rectangle also measuring $2 x \mathrm{~m}$. The other side of the rectangle is $y \mathrm{~m}$.
a) Given that the perimeter of the stage is 60 m . Show that the total area of the stage, $A \mathrm{~m}^{2}$ is given by

$$
A=60 x-2 x^{2}-\frac{1}{2} \pi x^{2}
$$

b) Find the maximum area of the stage to 3 s.f., and justify why this is a maximum area.
\qquad
a) Show that

$$
3 \sec ^{2} x-4 \tan x \equiv \sec ^{2} x(3-4 \sin x \cos x)
$$

b) Hence, find all the solutions to the equation $7=\sec ^{2} x(3-4 \sin x \cos x)$ in the interval $-180^{\circ} \leq x \leq 180^{\circ}$, giving your answers to 1 decimal place.
[solutions based entirely on graphical or numerical methods are not acceptable]
3) The quadratic curves with equations

$$
y=k\left(2 x^{2}+1\right) \text { and } y=x^{2}-2 x
$$

where k is a constant, touch each other.

Determine the possible values of k. Give your answer in set notation.
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad

The figure above shows the cubic curve with equation

$$
y=x^{3}-4 x, x \geq 0 .
$$

The curve meets the x axis at the origin O and at the point where $x=2$.

The finite region R_{1} is bounded by the curve and the x axis, for $0 \leq x \leq 2$.

The region R_{2} is bounded by the curve and the x axis, for $2 \leq x \leq \sqrt{8}$.

Show that the area of R_{1} is equal to the area of R_{2}.
\qquad

5)

The cubic equation C passes through the origin O and its gradient function is

$$
\frac{d y}{d x}=6 x^{2}-6 x-20 .
$$

a) Show clearly that the equation of C can be written as

$$
y=x(2 x+a)(x+b),
$$

where a and b are constants.
b) Sketch the graph of C, indicating clearly the coordinates of the points where the graph meets the coordinate axes.
\qquad

End of Part A

Analysis Sheet

(to be filled in after paper has been marked)

Part A							
Question	Topic	My mark	out of	\%	Grade*	Action questions for the textbook	Submitted to teacher by when
1.			11			Pure 1 p281 Pure 2 p121	
2.			9			Pure 2 p157	
3.			5			Pure 1 p126	
4.			5			Pure 1 p304	
5.			8			Pure 1 p294	
TOTAL			38				
Part B							
1.			12			$\begin{aligned} & \hline S \text { and } M 1 \\ & \text { Ex 5B p74 } \end{aligned}$	
2.			7			Pure Book 1 p318	
3.			11			$\begin{aligned} & \text { S and M } 2 \\ & \text { Ex 6C p } 117 \end{aligned}$	
4.			7			$\begin{aligned} & \hline \text { S and M } 2 \\ & \text { Ex 7A p130 } \end{aligned}$	
TOTAL			37				
Target grade				Overall Grade			

* (A* 90+, A 80+, B 70+, C 60+, D 50+, E 40\%, less than 40 U (unclassified))
*Do 2 or 3 questions from each of these chapters in the books for questions where you achieved $<70 \%$ and bring in by the agreed date.

1a	$\begin{gathered} 60=2 x+2 x+\pi x \\ A=2 x y+\frac{\pi x^{2}}{2} \\ A=60 x-2 x^{2}-\frac{\pi x^{2}}{2} \end{gathered}$	M1 M1A1 M1A1
1b	$\begin{gathered} \frac{d A}{d x}=60-4 x-\pi x \\ 0=60-4 x-\pi x \\ x=\frac{60}{4+\pi} \end{gathered}$	M1 M1 set to 0 and rearrange A1
1c	$\begin{gathered} A=252 \\ \frac{d^{2} A}{d x^{2}}=-4-\pi \\ \therefore \frac{d^{2} A}{d x^{2}}<0 \\ \therefore A=252 \text { is max } \end{gathered}$	B1 M1 A1
2a	$\begin{gathered} 3 \sec ^{2} x-4 \tan x \equiv \sec ^{2} x(3-4 \sin x \cos x) \\ R H S=\frac{3-4 \sin x \cos x}{\cos ^{2} x} \\ =3 \sec ^{2} x-\frac{4 \sin x \cos x}{\cos ^{2} x} \\ =3 \sec ^{2} x-\frac{4 \sin x}{\cos x} \\ =3 \sec ^{2} x-4 \tan x \end{gathered}$	$\begin{aligned} & \text { M1 }\left(\sec ^{2} x=\frac{1}{\cos ^{2} x}\right. \\ & \text { M1 } \frac{\sin x}{\cos x}=\tan x \\ & \text { A1 full solution, correct notation etc. } \end{aligned}$
2b	$\begin{gathered} 3\left(\tan ^{2} x+1\right)-7-4 \tan x=0 \\ 3 \tan ^{2} x-4 \tan x-4=0 \\ (3 \tan x+2)(\tan x-2)=0 \\ \tan x=2 \\ \tan x=-\frac{2}{3} \\ x=63.4,-116.6,-33.7,146.3 \end{gathered}$	M1 - subbing in A1 - -correct quadratic M1 - solving quaddratice M1 - a principle solution and ± 180 soltuion A1 2 correct solutions A1 All correct solutions
3	$\begin{gathered} k\left(2 x^{2}+1\right)=x^{2}-2 x \\ (2 k-1) x^{2}+2 x+k=0 \\ (-2)^{2}-4 k(2 k-1)=0 \\ 2 k^{2}-k-1=0 \\ (2 k+1)(k-1)=0 \\ k=-\frac{1}{2}, k=1 \end{gathered}$	M1 A1 M1 M1 A1
4	$\begin{gathered} -R_{1}=\int_{0}^{2} x^{3}-4 x d x \\ =\left(\frac{x^{4}}{4}-2 x^{2}\right)_{0}^{2} \\ =(4-8)=-4 \end{gathered}$ Area is below the curve therefore area $=4$ $R_{2}=\int_{2}^{\sqrt{8}} x^{3}-4 x d x$	M1 Integrating something M1 Subbing 2 in A1 Justification of 4 being the area

