Doubles Tracking Test 2 part A

(38 marks: 46 minutes)

Name:;

Teacher:




1)

— - —

The figure below shows the design of a theatre stage which is the shape of a semicircle attached to a
rectangle. The diameter of the semicircle is 2x m and is attached to one side of the rectangle also measuring
2x m. The other side of the rectangle is y m.

a) Given that the perimeter of the stage is 60 m. Show that the total area of the stage, A m? is given by

1
A = 60x — 2x? —Enxz

(5 marks)

b) Find the maximum area of the stage to 3 s.f., and justify why this is a maximum area.
(6 marks)






2)

a) Show that
3sec’?x —4tanx = sec® x (3 — 4 sinx cosx)
(3 marks)

b) Hence, find all the solutions to the equation 7 = sec?x(3 — 4 sin x cos x) in the interval —180° < x < 180°,
giving your answers to 1 decimal place.
[solutions based entirely on graphical or numerical methods are not acceptable]

(6 marks)




3)  The quadratic curves with equations
y=k(2x2+l) and y=x2—2x,

where k 1s a constant, touch each other.

Determine the possible values of k. Give your answer in set notation.

(5 marks)







4)

y=x>—dx

The figure above shows the cubic curve with equation
_ 3
y=x"—4x, x=0.

The curve meets the x axis at the origin O and at the point where x=2.

The finite region R; is bounded by the curve and the x axis, for 0<x<2.

The region R, is bounded by the curve and the x axis, for 2<x < NCY

Show that the area of R} is equal to the area of R,.

(5 marks)







5)

The cubic equation C passes through the origin O and its gradient function is
D62 _6x-20.
dx
a) Show clearly that the equation of C can be written as
y=x(2x+a)(x+b),

where a and b are constants.

b) Sketch the graph of C, indicating clearly the coordinates of the points where
the graph meets the coordinate axes.

(6 marks)

(2 marks)







End of Part A
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Part A
Question Topic My mark out of % Grade* Action Submitted
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the textbook by when
1. 11 Pure 1 p281
Pure 2 p121
2. 9 Pure 2 p157
3. 5 Pure 1 p126
4. 5 Pure 1 p304
5. 8 Pure 1 p294
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Part B
1. 12 Sand M1
Ex 5B p74
2. 7 Pure Book 1
p318
3. 11 Sand M2
Ex 6Cp 117
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achieved < 70% and bring in by the agreed date.




Mark Scheme

2

—R; =fx3—4xdx
0
4

x 2
— | _ 2
- (5-2)
0
=(4-8)=-4
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3 k(2x?2+1) = x? — 2x Ml
QRk—1Dx%24+2x+k=0 Al
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