Doubles Tracking Test 2 part A

(38 marks: 46 minutes)

Name:

Teacher: _____

The figure below shows the design of a theatre stage which is the shape of a semicircle attached to a rectangle. The diameter of the semicircle is 2x m and is attached to one side of the rectangle also measuring 2x m. The other side of the rectangle is y m.

a) Given that the perimeter of the stage is 60 m. Show that the total area of the stage, $A m^2$ is given by

$$A = 60x - 2x^2 - \frac{1}{2}\pi x^2$$

(5 marks)

b) Find the maximum area of the stage to 3 s.f., and justify why this is a maximum area.

(6 marks)

a) Show that

2)

$$3\sec^2 x - 4\tan x \equiv \sec^2 x \left(3 - 4\sin x \cos x\right)$$

(3 marks)

b) Hence, find all the solutions to the equation $7 = \sec^2 x (3 - 4 \sin x \cos x)$ in the interval $-180^\circ \le x \le 180^\circ$, giving your answers to 1 decimal place. [solutions based entirely on graphical or numerical methods are not acceptable] (6 marks)

3) The quadratic curves with equations

$$y = k(2x^2 + 1)$$
 and $y = x^2 - 2x$,

where k is a constant, **touch** each other.

Determine the possible values of k. Give your answer in set notation.

(5 marks)

The figure above shows the cubic curve with equation

$$y = x^3 - 4x, \ x \ge 0$$

The curve meets the *x* axis at the origin *O* and at the point where x = 2. The finite region R_1 is bounded by the curve and the *x* axis, for $0 \le x \le 2$. The region R_2 is bounded by the curve and the *x* axis, for $2 \le x \le \sqrt{8}$. Show that the area of R_1 is equal to the area of R_2 .

(5 marks)

5) The cubic equation C passes through the origin O and its gradient function is

$$\frac{dy}{dx} = 6x^2 - 6x - 20.$$

a) Show clearly that the equation of C can be written as

$$y = x(2x+a)(x+b),$$

where a and b are constants.

(6 marks)

b) Sketch the graph of C, indicating clearly the coordinates of the points where the graph meets the coordinate axes. (2 marks)

End of Part A

Analysis Sheet

(to be filled in after paper has been marked)

Part A							
Question	Торіс	My mark	out of	%	Grade*	Action questions for the textbook	Submitted to teacher by when
1.			11			Pure 1 p281 Pure 2 p121	
2.			9			Pure 2 p157	
3.			5			Pure 1 p126	
4.			5			Pure 1 p304	
5.			8			Pure 1 p294	
TOTAL			38				
Part B							
1.			12			S and M 1 Ex 5B p74	
2.			7			Pure Book 1 p318	
3.			11			S and M 2 Ex 6C p 117	
4.			7			S and M 2 Ex 7A p130	
TOTAL			37				
Target grade				Overall Grade			

* (A* 90+, A 80+, B 70+, C 60+, D 50+, E 40% , less than 40 U (unclassified))

*Do 2 or 3 questions from each of these chapters in the books for questions where you achieved < 70% and bring in by the agreed date.

Mark Scheme

1a	$60 = 2x + 2x + \pi x$	M1
	$A = 2xy + \frac{\pi x^2}{2}$	M1A1
	$A = 60x - 2x^2 - \frac{\pi x^2}{2}$	M1A1
11	A	
1b	$\frac{dA}{dx} = 60 - 4x - \pi x$	M1 M1 set to 0 and rearrange
	$0 = 60 - 4x - \pi x$	Wit set to 0 and realizinge
	$x = \frac{60}{4 + \pi}$	A1
	$x = \frac{1}{4 + \pi}$	
1c	A = 252	B1
	$\frac{d^2A}{dx^2} = -4 - \pi$	M1
	$dx^2 - 4n$	A.1
	$\therefore \frac{d^2 A}{dx^2} < 0$	A1
	$\therefore A = 252 \text{ is max}$	
2a	$3\sec^2 x - 4\tan x \equiv \sec^2 x \left(3 - 4\sin x \cos x\right)$	
	$3-4\sin r\cos r$	
	$RHS = \frac{3 - 4\sin x \cos x}{\cos^2 x}$	
	$= 3 \sec^2 x - \frac{4 \sin x \cos x}{\cos^2 x}$ $= 3 \sec^2 x - \frac{4 \sin x}{\cos x}$	M1 (sec ² $x = \frac{1}{\cos^2 x}$
	$= 3 \sec^2 x - \frac{1}{\cos^2 x}$	
	$-3 \sec^2 x - \frac{4 \sin x}{2}$	sin r
	$= 3 \operatorname{Sec} x$ $\cos x$	$M1\frac{\sin x}{\cos x} = \tan x$
	$= 3 \sec^2 x - 4 \tan x$	A1 full solution, correct notation etc.
2b	$3(\tan^2 x + 1) - 7 - 4\tan x = 0$	M1 – subbing in
	$3\tan^2 x - 4\tan x - 4 = 0$	A1correct quadratic
	$(3\tan x + 2)(\tan x - 2) = 0$	M1 – solving quaddratice
	$\tan x = 2$	
	$\tan x = -\frac{2}{3}$	
	x = 63.4, -116.6, -33.7, 146.3	M1 – a principle solution and ± 180
		soltuion
		A1 2 correct solutions A1 All correct solutions
3	$k(2x^2 + 1) = x^2 - 2x$	M1
	$(2k-1)x^2 + 2x + k = 0$	A1
	$(2)^2 + (2) + (2)$	M1
	$(-2)^2 - 4k(2k - 1) = 0$ $2k^2 - k - 1 = 0$	M1 M1
		A1
	(2k+1)(k-1) = 0 $k = -\frac{1}{2}, k = 1$	
4		
	$-R_1 = \int x^3 - 4x dx$	M1 Integrating something
	$-R_{1} = \int_{0}^{\pi} x^{3} - 4x dx$ $= \left(\frac{x^{4}}{4} - 2x^{2}\right)_{0}^{2}$	M1 Integrating something M1 Subbing 2 in
	$=\left(\frac{x^2}{4}-2x^2\right)$	A1 Justification of 4 being the area
	= (4 - 8) = -4 Area is below the curve therefore area=4	
	$\sqrt{8}$	
	$R_2 = \int_{-\infty}^{\infty} x^3 - 4x dx$	
	J 2	

	$= \left(\frac{x^4}{4} - 2x^2\right)_2^{\sqrt{8}}$ $= (16 - 16) - (4 - 8)$ $= 4$ $R_1 = R_2$ Therefore areas are the same	M1 Subbing two sets of numbers and taking away A1
5a	$\frac{dy}{dx} = 6x^2 - 6x - 20$ $y = 2x^3 - 3x^2 - 20x + c$ 0 = c y = x(2x + 5)(x - 4)	M1A1 M1A1 M1A1
5b		B1Shape B1 roots