α	β	γ	δ	ε	ζ	η	θ	ι	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Perhaps the greatest paradox of all is that there are paradoxes in mathematics"
J Newman

Further Maths A2 (M2FP2D1) Assignment l (iota) A

Due to be handed in after Reading Week w/b $20^{\text {th }}$ Nov 17

PREPARATION You have an FP2 Mock exam $11 / 2$ hour paper the first week after half term in lesson time on all of FP2, so practice using the assignments.

CURRENT WORK

Solve the following first order linear differential equations of the type $\frac{\mathrm{d} y}{\mathrm{~d} x}+P y=Q$, where P and Q are functions of x, by multiplying through the equation by an integrating factor to produce an exact equation.

1. $x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x y=\frac{x^{3}}{x+2} x>-2$
2. Find y in terms of x given that $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{x}$ and that $y=1$ when $x=1$.
3. a) Find the general solution of the differential equation $\left(x+\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=2\left(x^{2}+1\right)^{2}$, given y in terms of x.
b) Find the particular solution which satisfies the condition that $y=1$ at $x=1$.

CONSOLIDATION

4. By using

$$
2 \cos n \theta=\mathrm{e}^{\mathrm{i} n \theta}+\mathrm{e}^{-\mathrm{i} n \theta}
$$

for suitable values of n, or otherwise, show that

$$
2^{5} \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10
$$

Hence, or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{4}} 2^{5} \cos ^{6} \theta \mathrm{~d} \theta
$$

5. If $z=\cos \theta+i \sin \theta$, show that

$$
z-\frac{1}{z}=2 i \sin \theta, \quad z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

Hence, or otherwise, show that

$$
16 \sin ^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta
$$

6. Find the modulus and argument of each of the complex numbers z_{1} and z_{2}, where

$$
z_{1}=\frac{1+\mathrm{i}}{1-\mathrm{i}}, \mathrm{z}_{2}=\frac{\sqrt{ } 2}{1-\mathrm{i}}
$$

Plot the points representing z_{1}, z_{2} and $z_{1}+z_{2}$ on an Argand diagram. Deduce from your diagram that

$$
\tan \left(\frac{3 \pi}{8}\right)=1+\sqrt{ } 2
$$

7. (a) Find the first four terms of the expansion, in ascending powers of x, of

$$
(2 x+3)^{-1},|x|<\frac{2}{3} .
$$

(b) Hence, or otherwise, find the first four non-zero terms of the expansion, in ascending powers of x, of $\frac{\sin 2 x}{3+2 x},|x|<\frac{2}{3}$.
8. (a) Find the Taylor expansion of $\ln (\sin x)$ in ascending powers of $\left(x-\frac{\pi}{6}\right)$ up to and including the term in $\left(x-\frac{\pi}{6}\right)^{3}$.
(b) Use your answer to part a to obtain an estimate of $\ln (\sin 0.5)$, giving your answer to 6 decimal places.
9. Given that $y=\tan x$,
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
(b) Find the Taylor series expansion of $\tan x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$ up to and including the term in $\left(x-\frac{\pi}{4}\right)^{3}$.
(c) Hence show that

$$
\tan \frac{3 \pi}{10} \approx 1+\frac{\pi}{10}+\frac{\pi^{2}}{200}+\frac{\pi^{3}}{3000}
$$

10. Prove that

$$
\left(z^{n}-e^{\mathrm{i} \theta}\right)\left(z^{n}-e^{-\mathrm{i} \theta}\right)=z^{2 n}-2 z^{n} \cos \theta+1
$$

Hence, or otherwise, find the roots of the equation $z^{6}-z^{3} \sqrt{ } 2+1=0$
in the form $\cos \alpha+\mathrm{i} \sin \alpha,-\pi<\alpha \leq \pi$
11. Show that in an Argand diagram the equation $\arg (z-2)-\arg (z-2 i)=\frac{3 \pi}{4}$

Represents an arc of a circle and that $\left|\frac{z-4}{z-1}\right|$ is constant on this circle.
Find the values of z corresponding to the points in which this circle is cut by the curve given by

$$
|z-1|+|z-4|=5
$$

12. Sketch on an Argand diagram the curve described by the equation $|z-3+6 \mathrm{i}|=2|z|$ and express the equation of the curve in cartesian form.
13. Given that $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$
(a) show that the point P, which represents z on an Argand diagram, lies on an arc of a circle.
(b) Find the centre and radius of this circle and sketch the locus of P.
(c) Sketch, on a separate Argand diagram, the locus represented by $\left|\frac{z-3 i}{z+3}\right|=1$.
14.

The function f is defined for all real x by $\mathrm{f}(x)=\left\{\begin{array}{lll}\frac{1}{x} & \text { for } & x>0 \\ |x| & \text { for } & x \leq 0\end{array}\right.$
(a) Sketch the graph of f.
(b) Find the set of values of x for which $\mathrm{f}(x) \leq 4$.
15.

The diagram shows a sketch of the curve with equation $r^{2}=a^{2}\left(2-\sin ^{3} \theta\right), 0 \leq \theta \leq \frac{n}{2}$ where a is a positive constant.

By considering the stationary values of $r^{2} \sin ^{2} \theta$, or otherwise, find the polar coordinates of P, where P is a point on the curve at which the tangent is parallel to the initial line l.
16. Obtain, in the form $r=\mathrm{f}(\theta)$, a polar equation of the curve whose Cartesian equation is
(a) $x+4 y=3$
(b) $x^{2}+x y=2 y$

Answers:

(1) $y=x \ln (x+2)+c x$
(2) $y=\frac{1}{x} e^{x}-\frac{1}{x^{2}} e^{x}+\frac{1}{x^{2}}$
(3a) $y=\frac{1}{3}\left(x^{2}+1\right)^{2}+\frac{c}{\left(x^{2}+1\right)}$
(3b) $y=\frac{1}{3}\left(x^{2}+1\right)^{2}-\frac{2}{3\left(x^{2}+1\right)}$

Consolidation:

(4) $\frac{22}{3}+\frac{5}{2} \pi$
(6) $\begin{aligned} & Z_{1} \bmod .1, \arg \frac{\pi}{2} \\ & Z_{2} \bmod .1, \arg \frac{\pi}{4}\end{aligned}$
(7a) $\frac{1}{3}-\frac{2}{9} x+\frac{4}{27} x^{2}-\frac{8}{81} x^{3}+\ldots$
(7b) $\frac{2}{3}-\frac{4}{9} x^{2}-\frac{4}{27} x^{3}+\frac{8}{81} x^{4}+\ldots$
(8a) $-\ln 2+\sqrt{3}\left(x-\frac{\pi}{6}\right)-2\left(x-\frac{\pi}{6}\right)^{2}+\frac{4 \sqrt{3}}{3}\left(x-\frac{\pi}{6}\right)^{3}+\ldots$
(8b) -0.735166 (6 d.p.)
(9a) $\frac{d y}{d x}=\sec ^{2} x$

$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =2 \sec ^{2} x \tan x \\
\frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}} & =4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x
\end{aligned}
$$

(9b) $1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}+\ldots$
(10) $\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}, \quad \cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}$
(11) $\frac{10}{9} \pm \frac{4 \sqrt{ } 14}{9} \mathrm{i}$
$\cos \left(-\frac{7 \pi}{12}\right)+i \sin \left(-\frac{7 \pi}{12}\right)$,
$\cos \left(-\frac{\pi}{12}\right)+i \sin \left(-\frac{\pi}{12}\right)$
$\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right), \cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}$
(12) $(x+1)^{2}+(y-2)^{2}=20$
(13b) centre $(0,1)$, radius $\sqrt{2}$
(14) $-4 \leq x \leq 0$ or $x \geq \frac{1}{4}$
(15) $(1.095 a, 1.19)$
(16a) $r=\frac{3}{\cos \theta+4 \sin \theta}$
(16b) $r=\frac{2 \tan \theta}{\cos \theta+\sin \theta}$

BHASVIC MATHS

ASSIGNMENT COVER SHEET iota

Name
Maths Teacher

$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \stackrel{3}{0} \end{aligned}$	¢	$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{u} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$			Notes
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					

