

"Logic is the art of going wrong with confidence"

Further Maths A2 (M2FP2D1) Assignment η (eta) A Due in 6th Nov

M Kline

PREPARATION Every week you will be required to do some preparation for future lessons, to be advised by your teacher.

CURRENT WORK

1. Find the set of values of *x* for which

$$\frac{x^2 + 7x + 10}{x + 1} > 2x + 7$$

2. The curve shown has polar equation

$$r = a\left(1 + \frac{1}{2}\cos\theta\right), a > 0, 0 < \theta \le 2\pi$$

Determine the area enclosed by the curve, giving your answer in terms of a and π .

3. Sketch, on the same diagram, the curves C_1 , C_2 whose polar equations are

$$C_1: r = a(1 + \cos \theta), -\pi < \theta \le \pi$$

$$C_2: r = b(1 - \cos \theta), -\pi < \theta \le \pi$$

where a and b are positive constants with b > a. Find the points common to C_1 and C_2 .

Calculate the area of the finite region bounded by the arcs with polar equations $r = a(1 + \cos \theta)$ $\frac{\pi}{2} \le \theta \le \pi$

$$r = a(1 + \cos \theta), \quad \frac{\pi}{2} \leqslant \theta \leqslant \pi$$
$$r = a(1 - \cos \theta), \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}$$

4. Given that $x = At^2 e^{-t}$ satisfies the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = \mathrm{e}^{-t},$$

Find the value of A. a)

Hence find the solution of the differential equation for which x = 1 and $\frac{dx}{dt} = 0$ at t = 0. b)

- Use your solution to prove that for $t \ge 0, x \le 1$. c)
- 5. Find the solution subject to the given initial conditions for each of the following differential equations:

a)
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2t - 3$$
 $x = 2$ and $\frac{dx}{dt} = 4$ when $t = 0$

b)
$$\frac{d^2x}{dt^2} - 9x = 10\sin t$$
 $x = 2$ and $\frac{dx}{dt} = -1$ when $t = 0$

c)
$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 4x = 3te^{2t}$$
 $x = 0$ and $\frac{dx}{dt} = 1$ when $t = 0$

6. Sketch the curve with equation $r = a(1 + \cos \theta)$ for $0 \le \theta \le \pi$ where a > 0. Sketch also the line with equation $r = 2a \sec \theta$ for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ on the same diagram. The half-line with equation $\theta = \alpha, 0 < \alpha < \frac{\pi}{2}$, meets the curve at *A* and the line equation $r = 2a \sec \theta$ at *B*. If *O* is the pole, find the value of $\cos \alpha$ for which OB = 2OA.

7. Use the formula for the Maclaurin expansion and differentiation to show that

a)
$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^r + \dots$$
 b) $\sqrt{(1+x)} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \dots$

8. a) Show that the Maclaurin expansion for $\cos x$ is $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$

- b) Using the first 3 terms of the series, show that it gives a value for cos 30° correct to 3 decimal places.
- 9. Use Maclaurin's expansion and differentiation to expand, in ascending powers of x up to and including the term in x^4 ,
 - a) e^{3x} b) $\ln(1+2x)$ c) $\sin^2 x$
- 10. Given that $f(x) = (1-x)^2 \ln(1-x)$
 - a) Show that $f''(x) = 3 + 2\ln(1-x)$
 - b) Find the values of f(0), f'(0), f''(0), and f'''(0),
 - c) Express $(1-x)^2 \ln(1-x)$ in ascending powers of x up to and including the term in x^3 .
- 11. Given that $f(x) = \ln \cos x$,
 - a) Show that $f'(x) = -\tan x$
 - b) Find the values of f'(0), f''(0), f'''(0) and f''''(0).
 - c) Express $\ln \cos x$ as a series in ascending powers of x up to and including the term in x^4 .
 - d) Show that, using the first two terms of the series for $\ln \cos x$, with $x = \frac{\pi}{4}$, gives a value for

$$\ln 2 \text{ of } \frac{\pi^2}{16} \left(1 + \frac{\pi^2}{96} \right).$$

Answers:
(1)
$$x < -3$$
 or $-1 < x < 1$
(2) $\frac{9}{8}\pi a^{2}$
(3) $\left(\frac{2ab}{a+b}, \arccos \frac{b-a}{b+a}\right); \left(\frac{3}{4}\pi - 2\right)a^{2}$
(4a) $A = \frac{1}{2}$
(4b) $x = (1+t+\frac{1}{2}t^{2})e^{-t}$
(5a) $x = 2e^{2t} + t$
(5b) $x = e^{3t} + e^{-3t} - \sin t$
(5c) $x = (t+\frac{1}{2}t^{3})e^{2t}$
(6) 0.618
(9a) $1 + 3x + \frac{9x^{2}}{2} + \frac{9x^{3}}{2} + \frac{27}{8}x^{4} + \dots$
(9b) $2x - 2x^{2} + \frac{8x^{3}}{3} - 4x^{4} + \dots$
(9c) $x^{2} - \frac{x^{4}}{3}$
(10b) $f(0) = 0, f'(0) = -1, f''(0) = 3, \text{and } f'''(0) = -2$
(11b) $f'(0) = 0, f''(0) = -1, f'''(0) = 0, \text{and } f'''(0) = -2$
(11c) $\frac{-x^{2}}{2} - \frac{x^{4}}{12}$

ASSIGNMENT COVER SHEET eta

Name

Maths Teacher

Question	Done	Backpack	Ready for test	Notes
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				