α	β	γ	δ	ε	ζ	η	θ	ι	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ

"The mathematician's patterns, like the painter's or the poet's, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test."

G H Hardy

Further Maths A2 (M2FP2D1) Assignment φ (phi) A due w/b $5^{\text {th }}$ March 18

PREPARATION Every week you will be required to do some preparation for future lessons, to be advised by your teacher.

CURRENT WORK - MECHANICS

You need to complete the following past paper, timed and using good exam technique. Check the mark scheme only after you have completed the paper: M2 Edexcel Summer 2005.

CURRENT WORK - DECISION MATHS

To be advised by your teacher
Using the Decision Paper Solomon A select the questions you have covered in class and give them in with this assignment

CONSOLIDATION - FP2

1. a) Find the general solution of the differential equation $2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{d t}+2 x=2 t+9$.
b) Find the particular solution of this differential equation for which $x=3$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=-1$ when $t=0$.

The particular solution in part b) is used to model the motion of a particle P on the x-axis. At time t seconds $(t \geq 0), P$ is x metres from the origin O.
c) Show that the minimum distance between O and P is $\frac{1}{2}(5+\ln 2) \mathrm{m}$ and justify that the distance is a minimum.
2. a) Show that the substitution $y=v x$ transforms the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x-4 y}{4 x+3 y} \tag{I}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{3 v^{2}+8 v-3}{3 v+4} \tag{II}
\end{equation*}
$$

b) By solving differential equation (II), find a general solution of differential equation (I)
c) Given that $y=7$ at $x=1$, show that the particular solution of differential equation (I) can be written as $(3 y-x)(y+3 x)=200$.
3. Solve the equation $z^{5}=\mathrm{i}$, giving your answers in the form of $\cos \theta+\mathrm{i} \sin \theta$.
4. $(1+2 x) \frac{\mathrm{d} y}{\mathrm{~d} x} x+4 y^{2}=0$
a) Show that $(1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1+2(4 y-1) \frac{\mathrm{d} y}{\mathrm{~d} x}$
b) Differentiate equation (1) with respect to x to obtain an equation involving $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} x}, x$ and y.

Given that $y=\frac{1}{2}$ at $x=0$,
c) find a series solution for y, in ascending powers of x, up to and including the term in x^{3}.
5. a) Find the Taylor expansion of $\cos 2 x$ in ascending powers of $\left(x-\frac{\pi}{4}\right)$ up to and including the term in $\left(x-\frac{\pi}{4}\right)^{5}$.
b) Use your answer to a) to obtain an estimate of $\cos 2$, giving your answer to 6 decimal places.

CHALLENGE QUESTION

Sketch the following subsets of the $x-y$ plane:
(i) $|x|+|y| \leqslant 1$;
(ii) $\quad|x-1|+|y-1| \leqslant 1$;
(iii) $|x-1|-|y+1| \leqslant 1$;
(iv) $\quad|x||y-2| \leqslant 1$.

Answers:

Current work:

1a) $35 \mathrm{~m} \mathrm{~s}^{-1}$
1b) $\quad 14.6$ or $15 \mathrm{~m} \mathrm{~s}^{-1}$
2a) $\bar{x}=3 \mathrm{~cm}$
2b) $\frac{1}{7}, 0.143$
3a) $c=4$
3b) $\mathbf{a}=-36 \mathbf{i}+8 \mathbf{j}$
4a) $x=1.8 \mathrm{~m}$
4b) 6.75 or 6.8
5a) $\frac{2}{3}$

5b) $\quad \frac{2}{7} u<\frac{2}{3} u$ so B does not overtake A
ba) 1020 N
bb) 778 N or 780 N
So no more collisions
In equilibrium all forces act through a point P and weight meet at mid-point;
bc) hence reaction also acts through midpoint so reaction horizontal OR M(mid-point): $\mathrm{Y} \times 1.5=0 \Rightarrow \mathrm{Y}=0$ Hence reaction is horizontal

7c) 0.393 or 0.39 or 0.4

7a) 118 J or 120 J

7d) 5.39 or $5.4 \mathrm{~m} \mathrm{~s}^{-1}$

Consolidation

1a)

$\cos \frac{9 \pi}{10}+i \sin \frac{9 \pi}{10}$
3)

4b) $(1+2 x) \frac{d^{3} y}{d x^{3}}=8\left(\frac{d y}{d x}\right)^{2}+4(2 y-1) \frac{d^{2} y}{d x^{2}}$ $\cos \frac{17 \pi}{10}+i \sin \frac{17 \pi}{10}$

bb)

5a) $-2\left(x-\frac{\pi}{4}\right)+\frac{4}{3}\left(x-\frac{\pi}{4}\right)^{3}-\frac{4}{15}\left(x-\frac{\pi}{4}\right)^{5}+\cdots$
Db)

4c) $\quad y=\frac{1}{2}+x+\frac{3}{2} x^{2}+\frac{4}{3} x^{3}+\cdots$
bb) $-0.416147 \ldots$

Challenge question: rho

Only integers ending in $1,3,7$, or 9 are not divisible by 2 or 5 . This is $4 / 10$ of the possible integers, so the total number of such integers is $4 / 10$ of 1,000 , ie. 400 .
The integers can be added in pairs:

$$
\operatorname{sum}=(1+999)+(3+997)+\cdots+(499+501)
$$

There are 200 such pairs, so the sum is $1,000 \times 200$ and the average is 500 . A simpler argument would be to say that this is obvious by symmetry: there is nothing in the problem that favours an answer greater (or smaller) than 500 .

Alternatively, we can find the number of integers divisible by both 2 and 5 by adding the number divisible by 2 (i.e. 500) to the number divisible by 5 (i.e. 200), and subtracting the number divisible by both 2 and 5 (i.e. 100) since these have been counted twice. To find the sum, we can sum those divisible by 2 (using the formula for a geometric progression), add the sum of those divisible by 5 and subtract the sum of those divisible by 10 .

For the second part, either of these methods will work. In the first method you consider integers in blocks of 21 (essentially arithmetic to base 21): there are 12 integers in each such block that are not divisible by 3 or 7 (namely $1,2,4,5,8,10,11,13,16,17,19,20$) so the total number is $9261 \times 12 / 21=$ 5292 . The average is $9261 / 2$ as can be seen using the pairing argument $(1+9260)+(2+9259)+\cdots$ or the symmetry argument.

BHASVIC MaTHS

ASSIGNMENT COVER SHEET phi

\qquad

$\begin{aligned} & \stackrel{c}{n} \\ & \stackrel{n}{\omega} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$				Notes
M2 Edexcel Summer 2005					
Decision Solomon A					
1					
2					
3					
4					
5					

