α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	v	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ	ω

"The mathematician's patterns, like the painter's or the poet's, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test."

G H Hardy

Further Maths A2 (M2FP2D1) Assignment λ (lambda) A

Due in $4^{\text {th }}$ December

PREPARATION - STATICS

1 Revise M1 statics and moments, particularly friction. What does limiting equilibrium mean? When is it true that $F=\mu R$? When it isn't true, what can we say about the value of the frictional force?

2 Make a list of all common modelling assumptions in statics. In each case, note down the mathematical consequence.

Example: \quad surface is smooth \Rightarrow frictional forces can be ignored
3 Investigate whether or not it is possible for a ladder to rest in equilibrium against a rough wall with its foot on a smooth floor.

CURRENT WORK - MECHANICS PROJECTILES

4 Nick hits a golf ball with initial velocity $50 \mathrm{~ms}^{-1}$ at 35° to the horizontal. Calculate:
(a) the maximum height that the ball reaches;
(b) the horizontal distance it travels before bouncing.

5 Clare scoops a hockey ball off the ground, giving it an initial velocity of $19 \mathrm{~ms}^{-1}$ at 25° to the horizontal.
(a) Find the time that elapses before the ball hits the ground.
(b) Find the horizontal distance the ball travels before hitting the ground.
(c) Find how long it takes for the ball to reach its maximum height.
(d) Find the maximum height reached.

A member of the opposing team is standing 20 m away from Clare in the direction of the ball's flight.
(e) How high is the ball when it passes her? Can she stop the ball?
$6 \quad$ An aircraft is flying at a speed of $300 \mathrm{~ms}^{-1}$ and maintaining an altitude of 10000 m when a bolt becomes detached. Ignoring air resistance, find:
(a) the time the bolt takes to reach the ground;
(b) the horizontal distance it has travelled in this time;
(c) the speed of the bolt when it hits the ground; and
(d) the angle to the horizontal at which it hits the ground.

7 Davina Dare-cat, a stunt motorcycle rider, attempts to jump over a gorge 80 m wide. She uses a ramp at 25° to the horizontal for her take-off and has a speed of $30 \mathrm{~ms}^{-1}$ at this time.
(a) Does Davina cross the gorge successfully?

A different stunt rider, Mini, believes that the effect of air resistance is to reduce her distance by 40%.
(b) Under this assumption, calculate her minimum take-off speed for the same jump.

CONSOLIDATION - FP2

8. a) Find the Taylor series for $x^{3} \ln x$ in ascending powers of $(x-1)$ up to and including the term in $(x-1)^{4}$.
b) Using your series in a, find an approximation for ln1.5, giving your answer to 4 decimal places.
9. Find the Taylor expansion of $\sin 2 x$ in ascending powers of $\left(x-\frac{\pi}{6}\right)$ up to and including the term in $\left(x-\frac{\pi}{6}\right)^{4}$.
10. Use the substitution $y=\frac{Z}{x^{2}}$ to transform the differential equation
$x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}+2(x+1)^{2} y=\mathrm{e}^{-x}$ into the equation $\frac{\mathrm{d}^{2} z}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{dz}}{\mathrm{d} x}+2 z=\mathrm{e}^{-x}$.

Hence solve the equation $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}+2(x+1)^{2} y=\mathrm{e}^{-x}$, giving y in terms of x.
11. Use the substitution $z=\sin x$ to transform the differential equation $\cos x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \cos ^{3} x=2 \cos ^{5} x$ into the equation $\frac{\mathrm{d}^{2} y}{\mathrm{dz}^{2}}-2 y=2\left(1-z^{2}\right)$. Hence solve the equation $\cos x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \cos ^{3} x=2 \cos ^{5} x$, giving y in terms of x.
12. Use applications of de Moivre's theorem to prove the following trigonometric identities:
a) $\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
b) $\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)$
13. Solve the following equation, expressing your answer for z in the form $x+\mathrm{i} y$, where $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

$$
z^{3}-i=0
$$

14. Solve the following equation, expressing your answer for z in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leq \pi$. Give θ to 2d.p.

$$
z^{3}=\sqrt{11}-4 i
$$

CHALLENGE QUESTION

(i) Find the coefficient of x^{6} in $\left(1-2 x+3 x^{2}-4 x^{3}+5 x^{4}\right)^{3}$.

You should set our your working clearly.
(ii) By considering the binominal expansions of $(1+x)^{-2}$ and $(1+x)^{-6}$, or otherwise, find the coefficient of x^{6} in
$\left(1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+7 x^{6}\right)^{3}$

Answers:

(4a) $42 \mathrm{~m}(2 \mathrm{sf})$
(4b) $240 \mathrm{~m}(2 \mathrm{sf})$
(5a) 1.6 s (2sf)
(5b) 28 m (2sf)
(5c) $0.82 \mathrm{~s}(2 \mathrm{sf})$
(5d) 3.3 m (2sf)
(5e) $2.7 \mathrm{~m}(2 \mathrm{sf})$; reaching with her hockey stick, quite possibly
(6a) 45 s (2sf)
(6b) 14 km
(6c) $530 \mathrm{~ms}-1$ (2sf)
(6d) 56°
(7a) [70.3510...] No, her range is 70 m (2sf).
(7b) $41 \mathrm{~ms}-1$ (2sf)
(8b) 0.4059 (4 d.p.)
(9) $\frac{\sqrt{3}}{2}+1\left(x-\frac{\pi}{6}\right)-\sqrt{3}\left(x-\frac{\pi}{6}\right)^{2}-\frac{2}{3}\left(x-\frac{\pi}{6}\right)^{3}+\frac{\sqrt{3}}{3}\left(x-\frac{\pi}{6}\right)^{4}+\ldots$
(10) $y=\frac{\mathrm{e}^{-x}}{x^{2}}(A \cos x+B \sin x+1)$
(11) $y=A \mathrm{e}^{\sqrt{2} \sin x}+B \mathrm{e}^{-\sqrt{2} \sin x}+\sin ^{2} x$
(12a) $\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
(12b) $\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)$
(13) $z=\frac{\sqrt{3}}{2}+\frac{1}{2} i,-\frac{\sqrt{3}}{2}+\frac{1}{2} i,-i$
(14) $z=\sqrt{3} e^{-0.29 i}, \sqrt{3} e^{1.80 i}, \sqrt{3} e^{-2.39 i}$

Challenge Question: Eta

Let

$$
\mathrm{f}(x)=|x+1|-|x|+3|x-1|-2|x-2|-(x+2) .
$$

We have to solve $\mathrm{f}(x)=0$ in the five regions of the x-axis determined by the modulus functions, namely

$$
x \leqslant-1 ; \quad-1 \leqslant x \leqslant 0 ; \quad 0 \leqslant x \leqslant 1 ; \quad 1 \leqslant x \leqslant 2 ; 2 \leqslant x
$$

In the separate regions, we have

$$
\mathrm{f}(x)=\left\{\begin{array}{ccccc}
(x+1)-x+3(x-1)-2(x-2)-(x+2) & = & 0 & \text { for } & 2 \leqslant x<\infty \\
(x+1)-x+3(x-1)+2(x-2)-(x+2) & = & 4 x-8 & \text { for } & 1 \leqslant x \leqslant 2 \\
(x+1)-x-3(x-1)+2(x-2)-(x+2) & = & -2 x-2 & \text { for } & 0 \leqslant x \leqslant 1 \\
(x+1)+x-3(x-1)+2(x-2)-(x+2) & = & -2 & \text { for } & -1 \leqslant x \leqslant 0 \\
-(x+1)+x-3(x-1)+2(x-2)-(x+2) & = & -2 x-4 & \text { for } & -\infty<x \leqslant-1
\end{array}\right.
$$

Solving in each region gives:
(i) $x \geqslant 2$

Here, $\mathrm{f}(x)=0$ so the equation is satisfied for all values of $x . \mathrm{f}(-2)=0$ and $\mathrm{f}(x)=0$ for any $x \geqslant 2$.
(ii) $1 \leqslant x \leqslant 2$

Here, $\mathrm{f}(x)=0$ only if $x=2$.
(iii) $0 \leqslant x \leqslant 1$

Here, $\mathrm{f}(x)=0$ only if $x=-1$. This is not a solution since the point $x=-1$ does not lie in the region $0 \leqslant x \leqslant 1$.
(iv) $-1 \leqslant x \leqslant 0$

Here, $\mathrm{f}(x)=-2$ so there is no solution.
(v) $x \leqslant-1$

Here, $\mathrm{f}(x)=0$ only if $x=-2$. This is a solution since the point $x=-2$ does lie in the region $x \leqslant-1$.

The equation $\mathrm{f}(x)=0$ is therefore satisfied by $x=-2$ and by any x greater than, or equal to, 2 .

BHASVIC MATHS

ASSIGNMENT COVER SHEET lambda

Name \qquad Maths Teacher \qquad

	¢			Notes
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

