$\alpha \mid \beta \mid \gamma \mid \delta \mid \varepsilon \mid \zeta \mid \eta \mid \theta \mid z$	к	λ μ	ν	ξ	0	π	ρ	σ	τ	υ	φ	χ	Ψ	ω
--	---	-----	---	---	---	---	---	----------	---	---	---	---	---	---

"Perhaps the greatest paradox of all is that there are paradoxes in mathematics"

J Newman

Further Maths A2 (M2FP2D1) Assignment κ (kappa) A

PREPARATION *Every week you will be required to do some preparation for future lessons, to be advised by your teacher.*

Prepare the following proofs to reproduce in class:

- 1. a) Simplify $\cos\left(\frac{\pi}{2} \theta\right)$.
 - b) **Hence** show that $(\sin \theta + i\cos \theta)^6 \equiv -\cos 6\theta + i\sin 6\theta$
- 2. Use de Moivre's theorem to
 - a) prove that

 $(\cos\theta - i\sin\theta)^n \equiv \cos n\theta - i\sin n\theta$ for *n* any integer

- b) Verify that $\cos \frac{p}{q} \theta + i \sin \frac{p}{q} \theta$ is a possible value of $(\cos \theta + i \sin \theta)^{\frac{p}{q}}$, where p and q are integers, $q \neq 0$.
- 3. a) Use induction to prove that $(\cos \theta + i \sin \theta)^n \equiv \cos n\theta + i \sin n\theta$ for all positive integers *n*.
 - b) **Deduce** that $(\cos \theta + i \sin \theta)^m \equiv \cos m\theta + i \sin m\theta$ holds for all negative integers m

CONSOLIDATION

4. Find the solution subject to the given initial conditions for each of the following differential equations:

a)
$$25\frac{d^2x}{dt^2} + 36x = 18$$

b) $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 2x = 2t^2$
 $x = 1 \text{ and } \frac{dx}{dt} = 0.6 \text{ when } t = 0$

- 5. Use applications of de Moivre's theorem to prove the following trigonometric identities:
 - a) $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$
 - b) $\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)$
- 6. Solve the following equation, expressing your answer for z in the form x + iy, where $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

 $z^4 - 1 = 0$

7. Solve the following equation, expressing your answer for z in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. Give θ to 2d.p.

 $z^4 = 3 + 4i$

- 8. a) Find the Taylor series expansion of \sqrt{x} in ascending powers of (x-1) as far as the term in $(x-1)^4$.
 - b) Use your answers in **a** to obtain an estimate for $\sqrt{1.2}$, giving your answer to 3 decimal places.
- 9. a) Use Taylor's expansion to express each of the following as a series in ascending powers of x as far as the term in x^4 .

i)
$$\cos\left(x+\frac{\pi}{4}\right)$$
 ii) $\ln(x+5)$ iii) $\sin\left(x-\frac{\pi}{3}\right)$

- b) Use your result in **ii** to find an approximation for ln 5.2, giving your answer to 4 significant figures.
- 10. Sketch the graphs of
 - a) $y = \frac{x-1}{x+2}$ b) $y = \left|\frac{x-1}{x+2}\right|$

on separate diagrams.

Using your graph of $y = \left| \frac{x-1}{x+2} \right|$, find the set of values of x for which $\left| \frac{x-1}{x+2} \right| < 2$.

11. Shade on an Argand diagram the region represented by:

a) $ z-3 < 2$	b) $ z + 2i > 4$
c) $ z+3-2i < 5$	d) $ z-5-i > 2$
e) $2 < z - 3 - 2i < 3$	f) $1 < z+4+i < 5$
g) $ z-i < z-1 $	h) $ z-2i < z+3-i $
i) $ z < 5 z-4 $	j) $ z > 5 z+6 $

12. If z_1 and z_2 are complex numbers, show geometrically that $|z_1 - z_2| \le |z_1| + |z_2|$

- 13. If z_1 and z_2 are complex numbers, show geometrically that $|z_1 z_2| \ge ||z_1| |z_2||$
- 14. Find the sum of all even numbers between 2 and 200 inclusive, excluding those which are multiples of 3.

CHALLENGE QUESTION

Find all the solutions of the equation |x+1| - |x| + 3|x-1| - 2|x-2| = x+2

Answers:
(4a)
$$x = \frac{1}{2} \left(\cos \frac{6}{5} t + \sin \frac{6}{5} t + 1 \right)$$
 (4b) $x = e^{t} \sin t + 1 + 2t + t^{2}$ or $x = e^{t} \sin t + (1+t)^{2}$
(5a) $\sin 3\theta = 3\sin \theta - 4\sin^{3} \theta$ (5b) $\cos^{4} \theta = \frac{1}{8} \left(\cos 4\theta + 4\cos 2\theta + 3 \right)$
(6) $z = 1, i, -1, -i$ (7) $z = 5^{\frac{1}{4}} e^{0.23i}, 5^{\frac{1}{4}} e^{1.34i}, 5^{\frac{1}{4}} e^{-2.91i}$
(8b) 1.095 (3 d.p.) (9a i) $\frac{\sqrt{2}}{2} \left\{ 1 - x - \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{24}x^{4} - \ldots \right\}$
(9a ii) $\ln 5 + \frac{1}{5}x - \frac{1}{50}x^{2} + \frac{1}{375}x^{3} - \frac{1}{2500}x^{4} + \ldots$
(9a iii) $\sin \left(x - \frac{\pi}{3} \right) = \frac{1}{2} \left\{ -\sqrt{3} + x + \frac{\sqrt{3}}{2!}x^{2} - \frac{1}{3!}x^{3} - \frac{\sqrt{3}}{4!}x^{4} + \ldots \right\}$
(9b) 1.64866 (6 s.f.) (14) 6734
Challenge question:

Answers will appear on the next assignment.

ASSIGNMENT COVER SHEET kappa

Name

Maths Teacher

Question	Done	Backpack	Ready for test	Notes
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				